期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
近似联合训练的Faster R-CNN对立木图像的检测与识别 被引量:3
1
作者 高旋 赵亚凤 +2 位作者 胡峻峰 陈喆 陈振 《西北林学院学报》 CSCD 北大核心 2020年第6期249-257,共9页
为提高复杂背景下立木图像的识别准确率,提出近似联合训练的Faster R-CNN对立木图像进行目标提取并分类。首先迁移ImageNet上的模型VGG16、ResNet101和MobileNetV2提取图像特征并微调网络,然后构建新的数据集包括7科10种立木图像共2 304... 为提高复杂背景下立木图像的识别准确率,提出近似联合训练的Faster R-CNN对立木图像进行目标提取并分类。首先迁移ImageNet上的模型VGG16、ResNet101和MobileNetV2提取图像特征并微调网络,然后构建新的数据集包括7科10种立木图像共2 304张,通过该数据集训练和测试3种网络模型下的Faster R-CNN。结果表明,通过近似联合训练的Faster R-CNN得到的均值平均精度分别是93.64%、92.38%、92.58%,对于不同种属的立木,VGG16网络效果最佳。由于光照会对图像识别造成影响,将光照平衡前后的结果作对比,得到光照平衡后的立木图像识别结果优于平衡前。并利用训练的模型对斜向生长的立木图片进行检测,结果显示生长方向不影响图像识别准确率。证明该方法在具有复杂背景的立木图像上具有良好的效果,对更多立木的识别有一定的参考价值。 展开更多
关键词 立木目标检测 近似联合训练 Faster R-CNN 光照平衡
下载PDF
结合Faster R-CNN模型的遥感影像建筑物检测 被引量:13
2
作者 李东子 范大昭 苏亚龙 《测绘科学技术学报》 CSCD 北大核心 2018年第4期389-394,共6页
高分辨率遥感影像场景复杂,其中建筑物目标种类结构各异且存在大量遮挡,现有检测算法使用特征表达性不强。结合Faster R-CNN模型设计一种针对遥感影像的建筑物检测方法。首先通过共享卷积网络获取原始影像的深层特征图;然后结合区域建... 高分辨率遥感影像场景复杂,其中建筑物目标种类结构各异且存在大量遮挡,现有检测算法使用特征表达性不强。结合Faster R-CNN模型设计一种针对遥感影像的建筑物检测方法。首先通过共享卷积网络获取原始影像的深层特征图;然后结合区域建议网络生成初步检测结果;最后根据Fast R-CNN检测网络对结果进行进一步判定和边界回归。针对困难样本造成的训练中断,对训练策略进行改进,通过近似联合训练的方法对模型参数同步调优。实验结果表明,该方法准确率和召回率明显优于DPM方法,对非训练测试集遥感影像具有较好鲁棒性,有效实现了针对遥感影像的建筑物检测。 展开更多
关键词 遥感影像 建筑物检测 FASTER R-CNN模型 区域建议网络 近似联合训练
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部