In this paper, we use the metric coefficients and the equation of motion obtained in the second post- Newtonian approximation of scalar-tensor theory to derive the second-order light propagation equation and the light...In this paper, we use the metric coefficients and the equation of motion obtained in the second post- Newtonian approximation of scalar-tensor theory to derive the second-order light propagation equation and the light deflection angle and compare it with previous works. These results are useful for precision astrometry missions like ASTROD, GALA, Darwin and SIM which aim at astrometry with micro-arcsecond and nano-aresecond accuracies, and need for the second post-Newtonian framework and ephemeris for observations to determine the stellar and spacecraft positions.展开更多
In order to control the growth of space debris,a novel tethered space robot(TSR) was put forward.After capture,the platform,tether,and target constituted a tethered combination system.General nonlinear dynamics of the...In order to control the growth of space debris,a novel tethered space robot(TSR) was put forward.After capture,the platform,tether,and target constituted a tethered combination system.General nonlinear dynamics of the tethered combination system in the post-capture phase was established with the consideration of the attitudes of two spacecrafts and the quadratic nonlinear elasticity of the tether.The motion law of the tethered combination in the deorbiting process with different disturbances was simulated and discussed on the premise that the platform was only controlled by a constant thrust force.It is known that the four motion freedoms of the tethered combination are coupled with each other in the deorbiting process from the simulation results.A noticeable phenomenon is that the tether longitudinal vibration does not decay to vanish even under the large tether damping with initial attitude disturbances due to the coupling effect.The approximate analytical solutions of the dynamics for a simplified model are obtained through the perturbation method.The condition of the inter resonance phenomenon is the frequency ratio λ_1=2.The case study shows good accordance between the analytical solutions and numerical results,indicating the effectiveness and correctness of approximate analytical solutions.展开更多
The spectral representation method (SRM) is most widely used in simulating the stochastic field.The proper orthogonal decomposition (POD) based SRM is an important form.This paper investigates the approximate approach...The spectral representation method (SRM) is most widely used in simulating the stochastic field.The proper orthogonal decomposition (POD) based SRM is an important form.This paper investigates the approximate approaches to the POD-based SRM in simulating two typical problems,i.e.,the seismic ground motion and wind velocity fields simulations.Then,the accuracy resulting from the power spectral density matrix-based POD method (PSRM) is compared to that of the coherency matrix-based POD method (CPSRM).It is concluded that the CPSRM maintains a much higher accuracy than the PSRM.In the CPSRM,the linear interpolation of eigenvectors and third-order polynomial interpolation of eigenvalues can be accepted to attain high accuracy;the linearly distributed interpolation nodes are effective in the ground motions simulation;however,the exponentially distributed interpolation nodes are effective in the wind velocity simulation.展开更多
基金Supported by the National Natural Science Foundation of China under Grant No. 10875171
文摘In this paper, we use the metric coefficients and the equation of motion obtained in the second post- Newtonian approximation of scalar-tensor theory to derive the second-order light propagation equation and the light deflection angle and compare it with previous works. These results are useful for precision astrometry missions like ASTROD, GALA, Darwin and SIM which aim at astrometry with micro-arcsecond and nano-aresecond accuracies, and need for the second post-Newtonian framework and ephemeris for observations to determine the stellar and spacecraft positions.
基金Project (51475411) supported by the National Natural Science Foundation of ChinaProject (LY15E070002) supported by Zhejiang Provincial Natural Science Foundation of China
文摘In order to control the growth of space debris,a novel tethered space robot(TSR) was put forward.After capture,the platform,tether,and target constituted a tethered combination system.General nonlinear dynamics of the tethered combination system in the post-capture phase was established with the consideration of the attitudes of two spacecrafts and the quadratic nonlinear elasticity of the tether.The motion law of the tethered combination in the deorbiting process with different disturbances was simulated and discussed on the premise that the platform was only controlled by a constant thrust force.It is known that the four motion freedoms of the tethered combination are coupled with each other in the deorbiting process from the simulation results.A noticeable phenomenon is that the tether longitudinal vibration does not decay to vanish even under the large tether damping with initial attitude disturbances due to the coupling effect.The approximate analytical solutions of the dynamics for a simplified model are obtained through the perturbation method.The condition of the inter resonance phenomenon is the frequency ratio λ_1=2.The case study shows good accordance between the analytical solutions and numerical results,indicating the effectiveness and correctness of approximate analytical solutions.
基金supported by the National Natural Science Foundation of China (Grant Nos. 51278382,90815020)the Chang Jiang Scholars Program and the Innovative Research Team Program of the Ministry of Education of China (Grant No. IRT1125)the "111" Project (Grant No.B13024)
文摘The spectral representation method (SRM) is most widely used in simulating the stochastic field.The proper orthogonal decomposition (POD) based SRM is an important form.This paper investigates the approximate approaches to the POD-based SRM in simulating two typical problems,i.e.,the seismic ground motion and wind velocity fields simulations.Then,the accuracy resulting from the power spectral density matrix-based POD method (PSRM) is compared to that of the coherency matrix-based POD method (CPSRM).It is concluded that the CPSRM maintains a much higher accuracy than the PSRM.In the CPSRM,the linear interpolation of eigenvectors and third-order polynomial interpolation of eigenvalues can be accepted to attain high accuracy;the linearly distributed interpolation nodes are effective in the ground motions simulation;however,the exponentially distributed interpolation nodes are effective in the wind velocity simulation.