期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
稳健高效的高维成分数据近似零值插补方法及应用 被引量:4
1
作者 熊巍 潘晗 刘立新 《统计研究》 CSSCI 北大核心 2020年第5期104-116,共13页
随着计算机技术的迅猛发展,高维成分数据不断涌现并伴有大量近似零值和缺失,数据的高维特性不仅给传统统计方法带来了巨大的挑战,其厚尾特征、复杂的协方差结构也使得理论分析难上加难。于是如何对高维成分数据的近似零值进行稳健的插补... 随着计算机技术的迅猛发展,高维成分数据不断涌现并伴有大量近似零值和缺失,数据的高维特性不仅给传统统计方法带来了巨大的挑战,其厚尾特征、复杂的协方差结构也使得理论分析难上加难。于是如何对高维成分数据的近似零值进行稳健的插补,挖掘潜在的内蕴结构成为当今学者研究的焦点。对此,本文结合修正的EM算法,提出基于R型聚类的Lasso-分位回归插补法(SubLQR)对高维成分数据的近似零值问题予以解决。与现有高维近似零值插补方法相比,本文所提出的SubLQR具有如下优势。①稳健全面性:利用Lasso-分位回归方法,不仅可以有效地探测到响应变量的整个条件分布,还能提供更加真实的高维稀疏模式;②有效准确性:采用基于R型聚类的思想进行插补,可以降低计算复杂度,极大提高插补的精度。模拟研究证实,本文提出的SubLQR高效灵活准确,特别在零值、异常值较多的情形更具优势。最后将SubLQR方法应用于罕见病代谢组学研究中,进一步表明本文所提出的方法具有广泛的适用性。 展开更多
关键词 高维成分数据 近似零值 Lasso-分位回归 修正EM算法 稳健
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部