期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
泥炭沉积物沉降的近似预测方法
1
作者 K.Kogure 张聪辰 《地质科学译丛》 1994年第3期52-56,共5页
众所周知,Terzaghi固结理论不能确切地解释纤维泥炭的特性。纤维状泥炭中存在两类孔隙,一类是有机物之间的宏观孔隙(外部孔隙),另一类是存在于有机物内部的微观孔隙。本文基于这一事实提出了纤维状泥炭一维固结过程的近似分析方法。该... 众所周知,Terzaghi固结理论不能确切地解释纤维泥炭的特性。纤维状泥炭中存在两类孔隙,一类是有机物之间的宏观孔隙(外部孔隙),另一类是存在于有机物内部的微观孔隙。本文基于这一事实提出了纤维状泥炭一维固结过程的近似分析方法。该方法与现场观测结果比较后发现,两者具有十分相近的结果。 展开更多
关键词 泥煤 沉积物 沉降 近似预测法
下载PDF
Comparison of two approximal proximal point algorithms for monotone variational inequalities 被引量:1
2
作者 TAO Min 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2007年第6期969-977,共9页
Proximal point algorithms (PPA) are attractive methods for solving monotone variational inequalities (MVI). Since solving the sub-problem exactly in each iteration is costly or sometimes impossible, various approx... Proximal point algorithms (PPA) are attractive methods for solving monotone variational inequalities (MVI). Since solving the sub-problem exactly in each iteration is costly or sometimes impossible, various approximate versions ofPPA (APPA) are developed for practical applications. In this paper, we compare two APPA methods, both of which can be viewed as prediction-correction methods. The only difference is that they use different search directions in the correction-step. By extending the general forward-backward splitting methods, we obtain Algorithm Ⅰ; in the same way, Algorithm Ⅱ is proposed by spreading the general extra-gradient methods. Our analysis explains theoretically why Algorithm Ⅱ usually outperforms Algorithm Ⅰ. For computation practice, we consider a class of MVI with a special structure, and choose the extending Algorithm Ⅱ to implement, which is inspired by the idea of Gauss-Seidel iteration method making full use of information about the latest iteration. And in particular, self-adaptive techniques are adopted to adjust relevant parameters for faster convergence. Finally, some numerical experiments are reported on the separated MVI. Numerical results showed that the extending Algorithm II is feasible and easy to implement with relatively low computation load. 展开更多
关键词 Projection and contraction methods Proximal point algorithm (PPA) Approximate PPA (APPA) Monotone variational inequality (MVI) Prediction and correction
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部