In this paper, the approximate expressions of the solitary wave solutions for a class of nonlinear disturbed long-wave system are constructed using the homotopie mapping method.
Using the exponential function transformation approach along with an approximation for the centrifugal potential, the radial Schr6dinger equation of D-dimensional Hulthen potential is transformed to a hypergeometric d...Using the exponential function transformation approach along with an approximation for the centrifugal potential, the radial Schr6dinger equation of D-dimensional Hulthen potential is transformed to a hypergeometric differential equation. The approximate analytical solutions of scattering states are attained. The normalized wave functions expressed in terms of hypergeometrie functions of scattering states on the "k/2π scale" and the calculation formula of phase shifts are given. The physical meaning of the approximate analytical solutions is discussed.展开更多
Approximate analytical solutions of the D-dimensional Klein-Gordon equation are obtained for the scalarand vector general Hulthen-type potential and position-dependent mass with any l by using the concept of supersymm...Approximate analytical solutions of the D-dimensional Klein-Gordon equation are obtained for the scalarand vector general Hulthen-type potential and position-dependent mass with any l by using the concept of supersymmetricquantum mechanics (SUSYQM).The problem is numerically discussed for some cases of parameters.展开更多
The present article is concerned with the implementation of a recent semi-analytical method referred to as fractional reduced differential transform method (FRDTM) for computation of approximate solution of time-fra...The present article is concerned with the implementation of a recent semi-analytical method referred to as fractional reduced differential transform method (FRDTM) for computation of approximate solution of time-fractional gas dynamics equation (TFGDE) arising in shock fronts. In this approach, the fractional derivative is described in the Caputo sense. Four numeric experiments have been carried out to confirm the validity and the efficiency of the method. It is found that the exact or a closed approximate analytical solution of a fractional nonlinear differential equations arising in allied science and engineering can be obtained easily. Moreover, due to its small size of calculation contrary to the other analytical approaches while dealing with a complex and tedious physical problems arising in various branches of natural sciences and engineering, it is very easy to implement.展开更多
This study is focused on a steady dissipative layer, which is generated by Marangoni convection flow over the surface resulted from an imposed temperature gradient, coupled with buoyancy effects due to gravity and ext...This study is focused on a steady dissipative layer, which is generated by Marangoni convection flow over the surface resulted from an imposed temperature gradient, coupled with buoyancy effects due to gravity and external pressure. A model is proposed with Marangoni condition in the boundary conditions at the interface. The similarity equations are determined and approximate analytical solutions are obtained by an efficient transformation, asymptotic expansion and Pade approximant technique. For the cases that buoyancy force is favorable or unfavor-able to Marangoni flow, the features of flow and temperature fields are investigated in terms of Marangoni mixed convection parameter and Prantl number.展开更多
In order to control the growth of space debris,a novel tethered space robot(TSR) was put forward.After capture,the platform,tether,and target constituted a tethered combination system.General nonlinear dynamics of the...In order to control the growth of space debris,a novel tethered space robot(TSR) was put forward.After capture,the platform,tether,and target constituted a tethered combination system.General nonlinear dynamics of the tethered combination system in the post-capture phase was established with the consideration of the attitudes of two spacecrafts and the quadratic nonlinear elasticity of the tether.The motion law of the tethered combination in the deorbiting process with different disturbances was simulated and discussed on the premise that the platform was only controlled by a constant thrust force.It is known that the four motion freedoms of the tethered combination are coupled with each other in the deorbiting process from the simulation results.A noticeable phenomenon is that the tether longitudinal vibration does not decay to vanish even under the large tether damping with initial attitude disturbances due to the coupling effect.The approximate analytical solutions of the dynamics for a simplified model are obtained through the perturbation method.The condition of the inter resonance phenomenon is the frequency ratio λ_1=2.The case study shows good accordance between the analytical solutions and numerical results,indicating the effectiveness and correctness of approximate analytical solutions.展开更多
Within a Pekeris-type approximation to the centrifugal term, we examine the approximately analytical scattering state solutions of the l-wave Schrdinger equation with the modified Rosen–Morse potential. The calculati...Within a Pekeris-type approximation to the centrifugal term, we examine the approximately analytical scattering state solutions of the l-wave Schrdinger equation with the modified Rosen–Morse potential. The calculation formula of phase shifts is derived, and the corresponding bound state energy levels are also obtained from the poles of the scattering amplitude.展开更多
Both the homotopy analysis method and Galerkin spectral method are applied to find the analytical solutions of the two-dimensional and time-independent Gross-Pitaevskii equation, a nonlinear Schrodinger equation used ...Both the homotopy analysis method and Galerkin spectral method are applied to find the analytical solutions of the two-dimensional and time-independent Gross-Pitaevskii equation, a nonlinear Schrodinger equation used in describing the system of Bose-Einstein condensates trapped in a harmonic potential. The approximate analytical solutions are obtained successfully. Comparisons between the analytical solutions and the numerical solutions have been made. The results indicate that they are agreement very well with each other when the atomic interaction is not too strong.展开更多
The approximate analytical solutions of the Klein-Gordon equation with equal scalar and vector q-deformed Morse potential are presented for arbitrary e-states by using Laplace integral transform. The energy eigenvalue...The approximate analytical solutions of the Klein-Gordon equation with equal scalar and vector q-deformed Morse potential are presented for arbitrary e-states by using Laplace integral transform. The energy eigenvalues and corresponding wave functions are obtained for n and e values. In this study, in the non-relativistic limit c →∞, it has been also provided that the energy eigenfunetions for Klein-Gordon system turn into those for Schrodinger one.展开更多
A different set of governing equations on the large deflection of plates are derived by the principle of virtual work(PVW), which also leads to a different set of boundary conditions. Boundary conditions play an impor...A different set of governing equations on the large deflection of plates are derived by the principle of virtual work(PVW), which also leads to a different set of boundary conditions. Boundary conditions play an important role in determining the computation accuracy of the large deflection of plates. Our boundary conditions are shown to be more appropriate by analyzing their difference with the previous ones. The accuracy of approximate analytical solutions is important to the bulge/blister tests and the application of various sensors with the plate structure. Different approximate analytical solutions are presented and their accuracies are evaluated by comparing them with the numerical results. The error sources are also analyzed. A new approximate analytical solution is proposed and shown to have a better approximation. The approximate analytical solution offers a much simpler and more direct framework to study the plate-membrane transition behavior of deflection as compared with the previous approaches of complex numerical integration.展开更多
The Hellmann potential, which is a superposition of an attractive Coulomb potential -air and a Yutmwa potential b e-δr /r , is often used to compute bound-state normalizations and energy levels of neutral atoms. By u...The Hellmann potential, which is a superposition of an attractive Coulomb potential -air and a Yutmwa potential b e-δr /r , is often used to compute bound-state normalizations and energy levels of neutral atoms. By using the generalized parametric Nikiforov-Uvarov (NU) method, we have obtained the approximate analytical solutions of the radial Schr6dinger equation (SE) for the Hellmann potential. The energy eigenvalues and corresponding eigenfunctions are calculated in closed forms. Some numerical results are presented, which show good agreement with a numerical amplitude phase method and also those previously obtained by other methods. As a particular case, we find the energy levels of the pure Coulomb potential.展开更多
In this paper we use an alternative method to study analytically and numerically for a nonlocal elastic bar in tension.The equilibrium equation of the model is a Fredholm integral equation of the second kind.With the ...In this paper we use an alternative method to study analytically and numerically for a nonlocal elastic bar in tension.The equilibrium equation of the model is a Fredholm integral equation of the second kind.With the aid of an efficient iterative method,we are able to get the approximate analytical solution.For the purpose of comparisons,numerical solutions are also obtained for two types of nonlocal kernels,which show the validity of the analytical solution.The effects of some related parameters are also investigated.展开更多
The approximate analytical solution of velocity is presented for incompressible and viscous fluid driven by the oscillation of the periodic pressure, between two slit parallel plates with corrugated walls by employing...The approximate analytical solution of velocity is presented for incompressible and viscous fluid driven by the oscillation of the periodic pressure, between two slit parallel plates with corrugated walls by employing perturbation method. The corrugations of the two walls are described as periodic sinusoidal waves with small amplitude either in phase or half-period out of phase. Based on the analysis, we discuss the influence of the dimensionless parameters on velocity u±and mean velocity parameter φ±numerically, such as Reynolds number Re, nondimensional amplitude A of pressure gradient and wave number k.展开更多
基金Supported by the National Natural Science Foundation of China under Grant No.40876010the Main Direction Program of the Knowledge Innovation Project of Chinese Academy of Sciences under Grant No.KZCX2-YW-Q03-08+2 种基金the LASG State Key Laboratory Special Fundthe Foundation of Shanghai Municipal Education Commission under Grant No.E03004the Natural Science Foundation of Zhejiang Province under Grant No.Y6090164
文摘In this paper, the approximate expressions of the solitary wave solutions for a class of nonlinear disturbed long-wave system are constructed using the homotopie mapping method.
基金*Supported by the Natural Science Foundation of Jiangsu Province of China under Grant No. BK2010291, the Professor and Doctor Foundation of Yancheng Teachers University under Grant No. 07YSYJB0203
文摘Using the exponential function transformation approach along with an approximation for the centrifugal potential, the radial Schr6dinger equation of D-dimensional Hulthen potential is transformed to a hypergeometric differential equation. The approximate analytical solutions of scattering states are attained. The normalized wave functions expressed in terms of hypergeometrie functions of scattering states on the "k/2π scale" and the calculation formula of phase shifts are given. The physical meaning of the approximate analytical solutions is discussed.
文摘Approximate analytical solutions of the D-dimensional Klein-Gordon equation are obtained for the scalarand vector general Hulthen-type potential and position-dependent mass with any l by using the concept of supersymmetricquantum mechanics (SUSYQM).The problem is numerically discussed for some cases of parameters.
文摘The present article is concerned with the implementation of a recent semi-analytical method referred to as fractional reduced differential transform method (FRDTM) for computation of approximate solution of time-fractional gas dynamics equation (TFGDE) arising in shock fronts. In this approach, the fractional derivative is described in the Caputo sense. Four numeric experiments have been carried out to confirm the validity and the efficiency of the method. It is found that the exact or a closed approximate analytical solution of a fractional nonlinear differential equations arising in allied science and engineering can be obtained easily. Moreover, due to its small size of calculation contrary to the other analytical approaches while dealing with a complex and tedious physical problems arising in various branches of natural sciences and engineering, it is very easy to implement.
基金Supported by the National Natural Science Foundation of China(21206009)Funding Project for Academic Human Resources Development in Institutions of Higher Learning under the Jurisdiction of Beijing Municipality(PHR201107123)Program for Doctoral Fund in Beijing University of Civil Engineering and Architecture(101102307)
文摘This study is focused on a steady dissipative layer, which is generated by Marangoni convection flow over the surface resulted from an imposed temperature gradient, coupled with buoyancy effects due to gravity and external pressure. A model is proposed with Marangoni condition in the boundary conditions at the interface. The similarity equations are determined and approximate analytical solutions are obtained by an efficient transformation, asymptotic expansion and Pade approximant technique. For the cases that buoyancy force is favorable or unfavor-able to Marangoni flow, the features of flow and temperature fields are investigated in terms of Marangoni mixed convection parameter and Prantl number.
基金Project (51475411) supported by the National Natural Science Foundation of ChinaProject (LY15E070002) supported by Zhejiang Provincial Natural Science Foundation of China
文摘In order to control the growth of space debris,a novel tethered space robot(TSR) was put forward.After capture,the platform,tether,and target constituted a tethered combination system.General nonlinear dynamics of the tethered combination system in the post-capture phase was established with the consideration of the attitudes of two spacecrafts and the quadratic nonlinear elasticity of the tether.The motion law of the tethered combination in the deorbiting process with different disturbances was simulated and discussed on the premise that the platform was only controlled by a constant thrust force.It is known that the four motion freedoms of the tethered combination are coupled with each other in the deorbiting process from the simulation results.A noticeable phenomenon is that the tether longitudinal vibration does not decay to vanish even under the large tether damping with initial attitude disturbances due to the coupling effect.The approximate analytical solutions of the dynamics for a simplified model are obtained through the perturbation method.The condition of the inter resonance phenomenon is the frequency ratio λ_1=2.The case study shows good accordance between the analytical solutions and numerical results,indicating the effectiveness and correctness of approximate analytical solutions.
基金Supported by the National Natural Science Foundation of China under Grant No.11405128Natural Science Basic Research Plan in Shaanxi Province of China under Grant No.15JK2093
文摘Within a Pekeris-type approximation to the centrifugal term, we examine the approximately analytical scattering state solutions of the l-wave Schrdinger equation with the modified Rosen–Morse potential. The calculation formula of phase shifts is derived, and the corresponding bound state energy levels are also obtained from the poles of the scattering amplitude.
基金Supported by the National Natural Science Foundation under Grant No. 11047010
文摘Both the homotopy analysis method and Galerkin spectral method are applied to find the analytical solutions of the two-dimensional and time-independent Gross-Pitaevskii equation, a nonlinear Schrodinger equation used in describing the system of Bose-Einstein condensates trapped in a harmonic potential. The approximate analytical solutions are obtained successfully. Comparisons between the analytical solutions and the numerical solutions have been made. The results indicate that they are agreement very well with each other when the atomic interaction is not too strong.
文摘The approximate analytical solutions of the Klein-Gordon equation with equal scalar and vector q-deformed Morse potential are presented for arbitrary e-states by using Laplace integral transform. The energy eigenvalues and corresponding wave functions are obtained for n and e values. In this study, in the non-relativistic limit c →∞, it has been also provided that the energy eigenfunetions for Klein-Gordon system turn into those for Schrodinger one.
基金the National Natural Science Foundation of China(Grant No.11372321)
文摘A different set of governing equations on the large deflection of plates are derived by the principle of virtual work(PVW), which also leads to a different set of boundary conditions. Boundary conditions play an important role in determining the computation accuracy of the large deflection of plates. Our boundary conditions are shown to be more appropriate by analyzing their difference with the previous ones. The accuracy of approximate analytical solutions is important to the bulge/blister tests and the application of various sensors with the plate structure. Different approximate analytical solutions are presented and their accuracies are evaluated by comparing them with the numerical results. The error sources are also analyzed. A new approximate analytical solution is proposed and shown to have a better approximation. The approximate analytical solution offers a much simpler and more direct framework to study the plate-membrane transition behavior of deflection as compared with the previous approaches of complex numerical integration.
文摘The Hellmann potential, which is a superposition of an attractive Coulomb potential -air and a Yutmwa potential b e-δr /r , is often used to compute bound-state normalizations and energy levels of neutral atoms. By using the generalized parametric Nikiforov-Uvarov (NU) method, we have obtained the approximate analytical solutions of the radial Schr6dinger equation (SE) for the Hellmann potential. The energy eigenvalues and corresponding eigenfunctions are calculated in closed forms. Some numerical results are presented, which show good agreement with a numerical amplitude phase method and also those previously obtained by other methods. As a particular case, we find the energy levels of the pure Coulomb potential.
基金supported by the City University of Hong Kong (Grant No. 7008111)
文摘In this paper we use an alternative method to study analytically and numerically for a nonlocal elastic bar in tension.The equilibrium equation of the model is a Fredholm integral equation of the second kind.With the aid of an efficient iterative method,we are able to get the approximate analytical solution.For the purpose of comparisons,numerical solutions are also obtained for two types of nonlocal kernels,which show the validity of the analytical solution.The effects of some related parameters are also investigated.
基金Supported by the National Natural Science Foundation of China under Grant No.11472140the Natural Science Foundation of Inner Mongolia Autonomous Region of China under Grant No.2016MS0106the Inner Mongolia Grassland Talent under Grant No.12000-12102013
文摘The approximate analytical solution of velocity is presented for incompressible and viscous fluid driven by the oscillation of the periodic pressure, between two slit parallel plates with corrugated walls by employing perturbation method. The corrugations of the two walls are described as periodic sinusoidal waves with small amplitude either in phase or half-period out of phase. Based on the analysis, we discuss the influence of the dimensionless parameters on velocity u±and mean velocity parameter φ±numerically, such as Reynolds number Re, nondimensional amplitude A of pressure gradient and wave number k.