-
题名近室温磁制冷合金材料的研究进展及发展前景
被引量:2
- 1
-
-
作者
李冬梅
左定荣
余鹏
-
机构
重庆师范大学物理与电子工程学院
-
出处
《材料导报》
EI
CAS
CSCD
北大核心
2021年第11期11119-11125,共7页
-
基金
重庆市基础研究与前沿探索项目(cstc2018jcyjAX0329,cstc2018jcyjAX0444)
重庆市教委科学技术研究重点项目(KJZD-K201900501)。
-
文摘
磁制冷技术是一种高效节能、绿色环保、可靠性强的先进制冷技术,其核心原理是磁性材料的磁热效应,即磁制冷工质等温磁化时向外界放出热量,绝热退磁时从外界吸收热量。理论上所有的磁性材料都具有磁热效应,但只有极少数具有显著磁热效应的磁性材料可用于磁制冷。因此,研发具有较大磁热效应的磁制冷工质是决定磁致冷技术能否得到应用和推广的关键因素。经过几十年的发展,人们陆续发现了许多性能优异的磁制冷材料,推动和促进了磁制冷技术的发展。目前,磁制冷技术在20 K以下的低温区已经得到了较为广泛的应用,如液氦的制备、低温物理研究以及航空航天等领域都采用了磁制冷技术。低温区的磁制冷材料通常为顺磁状态,其构型熵可以忽略不计,但随着温度的升高,用于低温区磁制冷的顺磁材料的晶格振动变大,构型熵对磁制冷系统的影响不可忽略,即传统的顺磁态磁制冷工质在近室温区已不再适用,因此研发近室温区的磁制冷材料具有重要意义。近20年间,国内外研究者对近室温区磁制冷材料进行了大量研究并取得了许多重要成果,如以Gd(SiGe)_(4)、La(FeSi)_(13)、MnAs合金和NiMn基Heusler合金等为代表的具有优异磁热效应的一级相变磁制冷材料,这些合金的磁热效应通常是由结构相变与磁相变的叠加引起的,但常常伴有较大的热滞与磁滞损耗,进而会大幅度降低磁制冷的效率。除了一级相变磁制冷材料外,还有稀土Gd及其化合物、Gd基非晶态合金等具有二级磁相变的近室温磁制冷材料。其中,Gd基非晶态合金具有制冷温区宽、涡流损耗低、磁滞低、成分范围宽、耐腐蚀和易于加工等优点,其较宽的制冷温区特别适合室温埃里克森磁制冷循环,具有广阔的应用前景。本文简要介绍了磁热效应的原理以及磁制冷技术的发展,重点介绍了近室温磁制冷材料的磁热性能和最新研究进展,包括Gd(SiGe)_(4)、La(FeSi)_(13)、MnAs合金、NiMn基Heusler合金等一级相变磁制冷材料和具有二级磁相变的Gd基非晶态合金,并分析了它们作为磁制冷材料的优点和存在不足,讨论了各系材料未来的发展方向和趋势。
-
关键词
近室温磁制冷
磁热效应
磁制冷材料
磁熵变
非晶态合金
-
Keywords
magnetic refrigeration near room temperature
magnetocaloric effect
magnetic refrigeration material
magnetic entropy change
amorphous alloy
-
分类号
TM271
[一般工业技术—材料科学与工程]
-