In this paper, supose Γ be a boundary of a Jordan domain D and Γ satisfied Альпер condition, the order that rational type interpolating operators at Fejer's points of f(z)∈C(Γ) converge to f(z) in the se...In this paper, supose Γ be a boundary of a Jordan domain D and Γ satisfied Альпер condition, the order that rational type interpolating operators at Fejer's points of f(z)∈C(Γ) converge to f(z) in the sense of uniformly convergence is obtained.展开更多
Suppose that the outer mapping function of domain D has its second continuous derivatives. In this paper, the order proximation by (0,1,…,q) Hermite-Fejer interpolating polynomials at nearly Fejer's points of fun...Suppose that the outer mapping function of domain D has its second continuous derivatives. In this paper, the order proximation by (0,1,…,q) Hermite-Fejer interpolating polynomials at nearly Fejer's points of function of class A(D) are presented. Moreover in general the order of approximation is sharp.展开更多
In this paper, the authers introduce certain entire exponential type interpolation operatots and study the convergence problem of these operatots in c(R) or Lp(R) (1≤p<∞)
In this paper,a new third type S.N.Bernstein interpolation polynomial H n(f;x,r) with zeros of the Chebyshev ploynomial of the second kind is constructed. H n(f;x,r) converge uniformly on [-1,1] for any continuous fun...In this paper,a new third type S.N.Bernstein interpolation polynomial H n(f;x,r) with zeros of the Chebyshev ploynomial of the second kind is constructed. H n(f;x,r) converge uniformly on [-1,1] for any continuous function f(x) . The convergence order is the best order if \{f(x)∈C j[-1,1],\}0jr, where r is an odd natural number.展开更多
Starting from the extended mapping approach and a linear variable separation method, we find new families of variable separation solutions with some arbitrary functions for the (3+1)-dimensionM Burgers system. Then...Starting from the extended mapping approach and a linear variable separation method, we find new families of variable separation solutions with some arbitrary functions for the (3+1)-dimensionM Burgers system. Then based on the derived exact solutions, some novel and interesting localized coherent excitations such as embedded-solitons, taper-like soliton, complex wave excitations in the periodic wave background are revealed by introducing appropriate boundary conditions and/or initial qualifications. The evolutional properties of the complex wave excitations are briefly investigated.展开更多
In this work, the well-known problem put forward by S N Bernstein in 1930 is studied in a deep step. An operator is constructed by revising double interpolation nodes. It is proved that the operator converges to arbit...In this work, the well-known problem put forward by S N Bernstein in 1930 is studied in a deep step. An operator is constructed by revising double interpolation nodes. It is proved that the operator converges to arbitrary continuous functions uniformly and the convergence order is the best.展开更多
In this paper we introduce a new kind of interpolation of function with period 2π and establish the rate of convergence.The usual Birkhoff interpolation is a special case of our new interpolation as a linnit case.
The present paper constructs a set of nodes which can generate a rationalinterpolating function to approximate |x|at the rate of O(1/(nk log n))for any givennatural number κ.More importantly.this construction reveals...The present paper constructs a set of nodes which can generate a rationalinterpolating function to approximate |x|at the rate of O(1/(nk log n))for any givennatural number κ.More importantly.this construction reveals the fact that the higherdensity the distribution of a set of nodes has to zero (that is the singular point of thefunction |x|!),the better the rational interpolation approximation behaves.This probablyalso provides an idea to construct more valuable sets of nodes in the future.展开更多
In this paper, we discuss the transfinite interpolation and approxiulation by a class of periodic bivariate cubic Splines on type-Ⅱ triangulated partition △(2)mn. the existence, uniqueness and the expression o...In this paper, we discuss the transfinite interpolation and approxiulation by a class of periodic bivariate cubic Splines on type-Ⅱ triangulated partition △(2)mn. the existence, uniqueness and the expression of interpolation periodic bivariate splines are given. And at last, we estimate their approximation order.展开更多
Recently some classical operator quasi-interpolants were introduced to obtain much faster convergence. A.T. Diallo investigated some approximation properties of Szasz-Mirakjan Quasi-Interpolants, but he obtained only ...Recently some classical operator quasi-interpolants were introduced to obtain much faster convergence. A.T. Diallo investigated some approximation properties of Szasz-Mirakjan Quasi-Interpolants, but he obtained only direct theorem with Ditzian-Totik modulus wφ^2r (f, t). In this paper, we extend Diallo's result and solve completely the characterization on the rate of approximation by the method of quasi-interpolants to functions f ∈ CB[0, ∞) by making use of the unified modulus wφ^2r(f, t) (0≤λ≤ 1).展开更多
This paper demonstrates the equivalence of two classes of D-invariant polynomial subspaces, i.e., these two classes of subspaces are different representations of the breadth-one D-invariant subspace. Moreover, the aut...This paper demonstrates the equivalence of two classes of D-invariant polynomial subspaces, i.e., these two classes of subspaces are different representations of the breadth-one D-invariant subspace. Moreover, the authors solve the discrete approximation problem in ideal interpolation for the breadth-one D-invariant subspace. Namely, the authors find the points, such that the limiting space of the evaluation functionals at these points is the functional space induced by the given D-invariant subspace, as the evaluation points all coalesce at one point.展开更多
文摘In this paper, supose Γ be a boundary of a Jordan domain D and Γ satisfied Альпер condition, the order that rational type interpolating operators at Fejer's points of f(z)∈C(Γ) converge to f(z) in the sense of uniformly convergence is obtained.
文摘Suppose that the outer mapping function of domain D has its second continuous derivatives. In this paper, the order proximation by (0,1,…,q) Hermite-Fejer interpolating polynomials at nearly Fejer's points of function of class A(D) are presented. Moreover in general the order of approximation is sharp.
文摘In this paper, the authers introduce certain entire exponential type interpolation operatots and study the convergence problem of these operatots in c(R) or Lp(R) (1≤p<∞)
文摘In this paper,a new third type S.N.Bernstein interpolation polynomial H n(f;x,r) with zeros of the Chebyshev ploynomial of the second kind is constructed. H n(f;x,r) converge uniformly on [-1,1] for any continuous function f(x) . The convergence order is the best order if \{f(x)∈C j[-1,1],\}0jr, where r is an odd natural number.
基金the Natural Science Foundation of Zhejiang Province under Grant Nos.Y604106 and Y606181the Foundation of New Century"151 Talent Engineering"of Zhejiang Provincethe Scientific Research Foundation of Key Discipline of Zhejiang Province
文摘Starting from the extended mapping approach and a linear variable separation method, we find new families of variable separation solutions with some arbitrary functions for the (3+1)-dimensionM Burgers system. Then based on the derived exact solutions, some novel and interesting localized coherent excitations such as embedded-solitons, taper-like soliton, complex wave excitations in the periodic wave background are revealed by introducing appropriate boundary conditions and/or initial qualifications. The evolutional properties of the complex wave excitations are briefly investigated.
基金Foundation item: Supported by the National Natural Science Foundation of China(10626045)
文摘In this work, the well-known problem put forward by S N Bernstein in 1930 is studied in a deep step. An operator is constructed by revising double interpolation nodes. It is proved that the operator converges to arbitrary continuous functions uniformly and the convergence order is the best.
文摘In this paper we introduce a new kind of interpolation of function with period 2π and establish the rate of convergence.The usual Birkhoff interpolation is a special case of our new interpolation as a linnit case.
基金Supported in part by National and Provincial Natural Science Foundations(under grant numbers 10141001 and 101009)by Ningbo Key Doctoral Funds.
文摘The present paper constructs a set of nodes which can generate a rationalinterpolating function to approximate |x|at the rate of O(1/(nk log n))for any givennatural number κ.More importantly.this construction reveals the fact that the higherdensity the distribution of a set of nodes has to zero (that is the singular point of thefunction |x|!),the better the rational interpolation approximation behaves.This probablyalso provides an idea to construct more valuable sets of nodes in the future.
文摘In this paper, we discuss the transfinite interpolation and approxiulation by a class of periodic bivariate cubic Splines on type-Ⅱ triangulated partition △(2)mn. the existence, uniqueness and the expression of interpolation periodic bivariate splines are given. And at last, we estimate their approximation order.
基金the National Natural Science Foundation of China (No.10571040)the Doctoral Foundation of Hebei Normal University (No.L2004B04)
文摘Recently some classical operator quasi-interpolants were introduced to obtain much faster convergence. A.T. Diallo investigated some approximation properties of Szasz-Mirakjan Quasi-Interpolants, but he obtained only direct theorem with Ditzian-Totik modulus wφ^2r (f, t). In this paper, we extend Diallo's result and solve completely the characterization on the rate of approximation by the method of quasi-interpolants to functions f ∈ CB[0, ∞) by making use of the unified modulus wφ^2r(f, t) (0≤λ≤ 1).
基金supported by the National Natural Science Foundation of China under Grant Nos.11171133 and 11271156
文摘This paper demonstrates the equivalence of two classes of D-invariant polynomial subspaces, i.e., these two classes of subspaces are different representations of the breadth-one D-invariant subspace. Moreover, the authors solve the discrete approximation problem in ideal interpolation for the breadth-one D-invariant subspace. Namely, the authors find the points, such that the limiting space of the evaluation functionals at these points is the functional space induced by the given D-invariant subspace, as the evaluation points all coalesce at one point.