为了结合海底电缆寿命周期特点、制定适用于近海风电场高压海底电缆的选型标准,以海缆传输容量大于风电场设计向外传输容量为约束条件,构建了包括购置、敷设、损耗、故障损失、运行维护以及回收净投资成本的海缆全寿命周期成本(LCC)模型...为了结合海底电缆寿命周期特点、制定适用于近海风电场高压海底电缆的选型标准,以海缆传输容量大于风电场设计向外传输容量为约束条件,构建了包括购置、敷设、损耗、故障损失、运行维护以及回收净投资成本的海缆全寿命周期成本(LCC)模型,并以LCC等额年值最小作为选型标准。以国内某海上风电场海底电缆选型为案例进行计算分析。结果表明,购置、损耗、故障损失成本与自身LCC占比较重,最高分别达到26.4%、30.8%、62.0%;所有方案前期投资与自身LCC占比≤40%。当电压等级相同时,单芯海缆方案损耗成本至少比三芯海缆方案高出4.68×103万元;而当线芯数相同时,高电压等级故障损失成本至少比低电压等级海缆方案高出8.8×103万元;2回110 k V 3×500 mm2高压XLPE绝缘钢丝铠装海缆方案LCC等额年值(3.08×103万元/a)最小,该方案最优。展开更多
围绕近海风电场群接入电网的规划原则开展研究。系统总结了近海风电场接入电网的输电模式、并网电压等级、升压站无功补偿配置等规划方案选择问题。重点针对多个海上风电场接入同一区域电网时公共连接点(point of common coupling,PCC)...围绕近海风电场群接入电网的规划原则开展研究。系统总结了近海风电场接入电网的输电模式、并网电压等级、升压站无功补偿配置等规划方案选择问题。重点针对多个海上风电场接入同一区域电网时公共连接点(point of common coupling,PCC)点的选择问题进行了研究,通过理论模型分析了影响多个风电场接入后系统电压波动幅度的关键因素和电压波动的计算方法,并提出了PCC点选择的基本原则。通过珠海近海风电场群接入方案规划为实例,对比理论计算和数值仿真分析的结果,验证了所提测算方法的正确性。展开更多
对滨海海上风电场一次完整的打桩过程不同水深处环境噪声进行监测和分析。结果表明:打桩过程水下辐射噪声脉冲信号,在所研究海域附近环境噪声级由原来打桩前的130 d B左右瞬间增加约20~50 d B,20~20 000 Hz频段,打桩噪声谱级高于工程前...对滨海海上风电场一次完整的打桩过程不同水深处环境噪声进行监测和分析。结果表明:打桩过程水下辐射噪声脉冲信号,在所研究海域附近环境噪声级由原来打桩前的130 d B左右瞬间增加约20~50 d B,20~20 000 Hz频段,打桩噪声谱级高于工程前该海域背景环境噪声谱级约30~65 d B,100~1 000 Hz频率打桩辐射噪声谱级出现多个峰值,不同水深谱级最高峰值频率为200 Hz。根据打桩水下辐射噪声监测结果和浅海Marsh和Schulkin半经验公式,计算打桩辐射噪声声源级(距声源中心1 m处)为210.2 d B(参考声压1μPa)。为水下打桩辐射噪声的深入研究提供了基础数据,分析结果可供海洋环境和海洋生物保护研究参考。展开更多
文摘为了结合海底电缆寿命周期特点、制定适用于近海风电场高压海底电缆的选型标准,以海缆传输容量大于风电场设计向外传输容量为约束条件,构建了包括购置、敷设、损耗、故障损失、运行维护以及回收净投资成本的海缆全寿命周期成本(LCC)模型,并以LCC等额年值最小作为选型标准。以国内某海上风电场海底电缆选型为案例进行计算分析。结果表明,购置、损耗、故障损失成本与自身LCC占比较重,最高分别达到26.4%、30.8%、62.0%;所有方案前期投资与自身LCC占比≤40%。当电压等级相同时,单芯海缆方案损耗成本至少比三芯海缆方案高出4.68×103万元;而当线芯数相同时,高电压等级故障损失成本至少比低电压等级海缆方案高出8.8×103万元;2回110 k V 3×500 mm2高压XLPE绝缘钢丝铠装海缆方案LCC等额年值(3.08×103万元/a)最小,该方案最优。
文摘围绕近海风电场群接入电网的规划原则开展研究。系统总结了近海风电场接入电网的输电模式、并网电压等级、升压站无功补偿配置等规划方案选择问题。重点针对多个海上风电场接入同一区域电网时公共连接点(point of common coupling,PCC)点的选择问题进行了研究,通过理论模型分析了影响多个风电场接入后系统电压波动幅度的关键因素和电压波动的计算方法,并提出了PCC点选择的基本原则。通过珠海近海风电场群接入方案规划为实例,对比理论计算和数值仿真分析的结果,验证了所提测算方法的正确性。
文摘对滨海海上风电场一次完整的打桩过程不同水深处环境噪声进行监测和分析。结果表明:打桩过程水下辐射噪声脉冲信号,在所研究海域附近环境噪声级由原来打桩前的130 d B左右瞬间增加约20~50 d B,20~20 000 Hz频段,打桩噪声谱级高于工程前该海域背景环境噪声谱级约30~65 d B,100~1 000 Hz频率打桩辐射噪声谱级出现多个峰值,不同水深谱级最高峰值频率为200 Hz。根据打桩水下辐射噪声监测结果和浅海Marsh和Schulkin半经验公式,计算打桩辐射噪声声源级(距声源中心1 m处)为210.2 d B(参考声压1μPa)。为水下打桩辐射噪声的深入研究提供了基础数据,分析结果可供海洋环境和海洋生物保护研究参考。