期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于PER-PPO2的入侵检测技术
1
作者 黄迎春 任国杰 《沈阳理工大学学报》 CAS 2024年第5期7-13,共7页
随着万物信息化与智能化的快速发展,网络攻击范围不断扩大。传统的入侵检测算法,如主成分分析(PCA)结合随机森林和K近邻等,由于网络数据繁多,特征提取能力较差,分类准确率低。针对上述问题,提出一种新的入侵检测技术,称为优先经验采样... 随着万物信息化与智能化的快速发展,网络攻击范围不断扩大。传统的入侵检测算法,如主成分分析(PCA)结合随机森林和K近邻等,由于网络数据繁多,特征提取能力较差,分类准确率低。针对上述问题,提出一种新的入侵检测技术,称为优先经验采样的近端策略优化裁剪(prioritized experience replay-proximal policy optimization clip, PER-PPO2)算法,基于强化学习实现包裹法特征选择。深度强化学习通过构建以分类器混淆矩阵为基础的奖励函数,使智能体根据奖励反馈选择分类器的较优特征,结合优先经验采样优化算法的训练样本,提高算法的稳定性与收敛性能;使用性能较优的轻量级梯度提升机(LightGBM)作为分类器。使用NSL-KDD数据集对模型进行实验评估,结果表明模型将数据集的41维特征降低为8维时分类F1值达到0.871 3,可以满足入侵检测的要求。 展开更多
关键词 近端策略优化裁剪 优先经验采样 入侵检测 深度强化学习 LightGBM
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部