期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
应用近红外可见光谱快速测量柴油十六烷值 被引量:8
1
作者 詹白勺 杨建国 +1 位作者 刘雪梅 章海亮 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2017年第6期1749-1753,共5页
快速测量十六烷值对检测柴油品质及控制炼制工艺具有重大意义。首先对采集到的381份柴油样品进行近红外可见光谱波段全光谱扫描,利用小波分析(WT)对原始数据进行去噪声处理,应用竞争性自适应重加权算法(CARS)进行特征波长选择,将CARS提... 快速测量十六烷值对检测柴油品质及控制炼制工艺具有重大意义。首先对采集到的381份柴油样品进行近红外可见光谱波段全光谱扫描,利用小波分析(WT)对原始数据进行去噪声处理,应用竞争性自适应重加权算法(CARS)进行特征波长选择,将CARS提取的22个特征波长输入至LS-SVM预测模型,决定系数r2为0.723,预测均方根误差RMSEP为1.878%。结果表明,使用WT-CARS变量选择算法获取光谱特征波长,结合LS-SVM建模,可以快速、准确的测量柴油中的十六烷值,为进一步实现柴油十六烷值的在线检测以及其他性能参数的快速测定奠定了基础。 展开更多
关键词 近红外可见光谱 十六烷值 CARS LS-SVM
下载PDF
On-site variety discrimination of tomato plant using visible-near infrared reflectance spectroscopy 被引量:2
2
作者 Hui-rong XU Peng YU Xia-ping FU Yi-bin YING 《Journal of Zhejiang University-Science B(Biomedicine & Biotechnology)》 SCIE CAS CSCD 2009年第2期126-132,共7页
The use of visible-near infrared (NIR) spectroscopy was explored as a tool to discriminate two new tomato plant varieties in China (Zheza205 and Zheza207). In this study, 82 top-canopy leaves of Zheza205 and 86 top-ca... The use of visible-near infrared (NIR) spectroscopy was explored as a tool to discriminate two new tomato plant varieties in China (Zheza205 and Zheza207). In this study, 82 top-canopy leaves of Zheza205 and 86 top-canopy leaves of Zheza207 were measured in visible-NIR reflectance mode. Discriminant models were developed using principal component analysis (PCA), discriminant analysis (DA), and discriminant partial least squares (DPLS) regression methods. After outliers detection, the samples were randomly split into two sets, one used as a calibration set (n=82) and the remaining samples as a validation set (n=82). When predicting the variety of the samples in validation set, the classification correctness of the DPLS model after optimizing spectral pretreatment was up to 93%. The DPLS model with raw spectra after multiplicative scatter cor- rection and Savitzky-Golay filter smoothing pretreatments had the best satisfactory calibration and prediction abilities (correlation coefficient of calibration (Rc)=0.920, root mean square errors of calibration=0.196, and root mean square errors of predic- tion=0.216). The results show that visible-NIR spectroscopy might be a suitable alternative tool to discriminate tomato plant varieties on-site. 展开更多
关键词 Visible-NIR spectroscopy Tomato plant variety DISCRIMINATION Principal component analysis (PCA) Discriminant analysis (DA) Discriminant partial least squares (DPLS)
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部