近邻传播(AP)聚类算法面临的一个问题是不适用于多重尺度及任意空间形状的数据聚类处理。该文从数据分布特性的表征出发,提出了一种改进的近邻传播聚类算法AP-VSM(Affinity Propagation based on Variable-Similarity Measure)。首先,...近邻传播(AP)聚类算法面临的一个问题是不适用于多重尺度及任意空间形状的数据聚类处理。该文从数据分布特性的表征出发,提出了一种改进的近邻传播聚类算法AP-VSM(Affinity Propagation based on Variable-Similarity Measure)。首先,综合数据的全局与局部分布特性,设计了一种数据可变相似性度量计算方法,该度量可以有效地反映数据实际聚类的分布特性;然后在传统AP算法框架基础上,构造出基于可变相似性度量的近邻传播聚类算法,从而拓展了传统AP算法的数据处理能力。仿真实验验证了新方法性能优于传统AP算法。展开更多
为了使近邻传播(AP)聚类在高维空间中获得更好的聚类效果,该文提出一种基于谱分析的近邻传播聚类方法(Affinity Propagation based on Spectrum analyze,AP-SA)。首先,通过采用谱分析技术将分布在高维非线性的数据点集映射到几乎线性的...为了使近邻传播(AP)聚类在高维空间中获得更好的聚类效果,该文提出一种基于谱分析的近邻传播聚类方法(Affinity Propagation based on Spectrum analyze,AP-SA)。首先,通过采用谱分析技术将分布在高维非线性的数据点集映射到几乎线性的子空间上,映射过程实现高维数据降至低维。最后,通过AP聚类算法对映射在低维空间上的数据进行聚类,从而提高了AP算法在高维空间上的聚类性能。仿真实验结果表明,该方法相比于传统AP算法,在低维数据中无明显的优势,但随着实验的数据集的样本规模与维数的增加,在高维数据中的该方法降低了聚类时间的同时,也保证了较好的聚类效果。展开更多
文摘近邻传播(AP)聚类算法面临的一个问题是不适用于多重尺度及任意空间形状的数据聚类处理。该文从数据分布特性的表征出发,提出了一种改进的近邻传播聚类算法AP-VSM(Affinity Propagation based on Variable-Similarity Measure)。首先,综合数据的全局与局部分布特性,设计了一种数据可变相似性度量计算方法,该度量可以有效地反映数据实际聚类的分布特性;然后在传统AP算法框架基础上,构造出基于可变相似性度量的近邻传播聚类算法,从而拓展了传统AP算法的数据处理能力。仿真实验验证了新方法性能优于传统AP算法。
文摘为了使近邻传播(AP)聚类在高维空间中获得更好的聚类效果,该文提出一种基于谱分析的近邻传播聚类方法(Affinity Propagation based on Spectrum analyze,AP-SA)。首先,通过采用谱分析技术将分布在高维非线性的数据点集映射到几乎线性的子空间上,映射过程实现高维数据降至低维。最后,通过AP聚类算法对映射在低维空间上的数据进行聚类,从而提高了AP算法在高维空间上的聚类性能。仿真实验结果表明,该方法相比于传统AP算法,在低维数据中无明显的优势,但随着实验的数据集的样本规模与维数的增加,在高维数据中的该方法降低了聚类时间的同时,也保证了较好的聚类效果。