期刊文献+
共找到11篇文章
< 1 >
每页显示 20 50 100
近邻样本密度和隶属度加权FCM算法的遥感图像分类方法 被引量:12
1
作者 刘小芳 何彬彬 《仪器仪表学报》 EI CAS CSCD 北大核心 2011年第10期2242-2247,共6页
针对FCM算法具有对数据集进行等划分趋势的缺陷,利用样本本身的近邻分布特性,提出近邻样本密度加权FCM(NSD-WFCM)、近邻样本隶属度加权FCM(NSM-WFCM)以及近邻样本密度和隶属度加权FCM(NSDM-WFCM)算法,并应用于遥感图像分类。对比FCM算法... 针对FCM算法具有对数据集进行等划分趋势的缺陷,利用样本本身的近邻分布特性,提出近邻样本密度加权FCM(NSD-WFCM)、近邻样本隶属度加权FCM(NSM-WFCM)以及近邻样本密度和隶属度加权FCM(NSDM-WFCM)算法,并应用于遥感图像分类。对比FCM算法,NSD-WFCM、NSM-WFCM和NSDM-WFCM算法的总体分类精度和Kappa系数分别提高了5.67%、7.50%和11.17%;8.50%、11.25%和16.75%。实验结果表明:这些加权方法都在一定程度上克服了FCM算法的缺陷,提高了遥感图像的无监督分类能力,其中,NSM-WFCM算法的分类性能优于NSD-WFCM算法的分类性能,NSDM-WFCM算法分类性能最好。 展开更多
关键词 遥感图像分类 FCM算法 加权FCM算法 近邻样本密度 近邻样本隶属度
下载PDF
近邻样本协作表示的人脸识别算法 被引量:3
2
作者 魏冬梅 周卫东 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2015年第3期115-121,共7页
在Gabor特征空间,根据相关系数寻找测试图像的近邻样本,并用这些近邻样本构造完备的冗余字典,从而提出一种基于Gabor特征的近邻样本协作表示的人脸识别算法.在l2范数约束下,利用可变厚度的紧致字典对测试图像进行稀疏表示,根据稀疏系数... 在Gabor特征空间,根据相关系数寻找测试图像的近邻样本,并用这些近邻样本构造完备的冗余字典,从而提出一种基于Gabor特征的近邻样本协作表示的人脸识别算法.在l2范数约束下,利用可变厚度的紧致字典对测试图像进行稀疏表示,根据稀疏系数逐类计算重构图像和测试图像之间的误差,并判断测试图像所属类别.该算法在FERET、ORL和AR数据上进行了无遮挡测试,在AR库上进行了有遮挡测试.实验结果表明,无论有无遮挡,识别速度和识别率都得到了明显改善. 展开更多
关键词 GABOR 相关系数 近邻样本 协作表示 人脸识别
下载PDF
一种基于近邻样本评估的动态选择性集成预测算法 被引量:1
3
作者 曲文龙 李一漪 +1 位作者 陈笑屹 曲嘉一 《西北大学学报(自然科学版)》 CAS CSCD 北大核心 2020年第5期802-810,共9页
针对现有的动态选择策略局限于寻找待测样本的局部相似样本,未充分考虑样本特征之间的重要性程度,从而对预测精度造成影响的问题,该文提出一种基于近邻样本评估的动态选择性集成预测算法。算法基于误差扰动度量出特征的重要性权值,并在... 针对现有的动态选择策略局限于寻找待测样本的局部相似样本,未充分考虑样本特征之间的重要性程度,从而对预测精度造成影响的问题,该文提出一种基于近邻样本评估的动态选择性集成预测算法。算法基于误差扰动度量出特征的重要性权值,并在此基础上进行样本近邻的相似性度量。根据不同的待测样本特点自动适应近邻数目,找到最佳近邻。通过最佳近邻对具有不同预测精度的学习器的性能评估,择优筛选出精度较高的学习器进行选择性集成预测。实验结果表明,相比原有集成学习算法和普通选择性集成算法,该算法预测精度得到进一步提升,表现出良好的预测效果和较强的预测性能。 展开更多
关键词 动态选择性集成 回归预测 近邻样本 相似度量
下载PDF
基于最优近邻的局部保持投影方法
4
作者 赵俊涛 李陶深 卢志翔 《计算机工程》 CAS CSCD 北大核心 2024年第9期161-168,共8页
局部保持投影(LPP)方法是机器学习领域中一种经典的降维方法。然而LPP方法以及部分改进方法在构建数据的局部结构时简单地使用k最近邻(k-NN)分类算法寻找样本的近邻点,容易受到参数k、噪声和异常值的影响。为了解决上述问题,提出一种基... 局部保持投影(LPP)方法是机器学习领域中一种经典的降维方法。然而LPP方法以及部分改进方法在构建数据的局部结构时简单地使用k最近邻(k-NN)分类算法寻找样本的近邻点,容易受到参数k、噪声和异常值的影响。为了解决上述问题,提出一种基于最优近邻的LPP方法。该方法使用寻找最优近邻算法,在找到样本近邻点后,进一步选择与样本有一定数量的共同近邻点的近邻样本作为最优近邻,通过共同近邻点的限定来选择与样本最相似的近邻,增强近邻样本间的相关性,避免了传统LPP方法受参数k影响大等问题。在选择出足够的样本最优近邻后,构建数据局部结构,以便准确地反映数据的本质结构特征,使降维后的数据能最大程度保留样本的有效信息,提升后续机器学习模型的性能。公共图像数据集上的对比实验结果表明,该方法具有较好的数据降维效果,有效地提高了图像识别准确率。 展开更多
关键词 局部保持投影方法 最优近邻 近邻样本 降维 特征提取
下载PDF
基于多尺度稀疏近邻图的近邻保持嵌入算法 被引量:2
5
作者 于露 《沈阳工业大学学报》 EI CAS 北大核心 2019年第2期206-210,共5页
针对近邻保持嵌入算法NPE中构造近邻图所存在的缺陷,提出了基于多尺度稀疏近邻图的近邻保持嵌入算法.对于每个待识别的人脸图片,该方法都建立一个具有九个尺度的图像金字塔,并且计算金字塔中每个尺度的图片与其他图片金字塔对应尺度的... 针对近邻保持嵌入算法NPE中构造近邻图所存在的缺陷,提出了基于多尺度稀疏近邻图的近邻保持嵌入算法.对于每个待识别的人脸图片,该方法都建立一个具有九个尺度的图像金字塔,并且计算金字塔中每个尺度的图片与其他图片金字塔对应尺度的稀疏近邻.利用稀疏表示算法抗遮挡的特性,通过计算样本多尺度近邻的方法克服了传统方法丢失人脸图片二维结构的缺点.结果表明,该算法具有较强的鲁棒性,比传统的NPE算法具有更好的识别效果. 展开更多
关键词 近邻 近邻样本 降维算法 近邻保持嵌入 人脸识别 稀疏表示 图片金字塔 多尺度图片
下载PDF
基于改进FSVM的数据挖掘分类算法 被引量:6
6
作者 赵小强 张露 《兰州理工大学学报》 CAS 北大核心 2016年第2期101-106,共6页
针对模糊支持向量机(FSVM)应用于数据挖掘分类中存在对大样本集训练速度慢以及对噪声点敏感影响分类正确率的问题,提出一种基于改进FSVM的数据挖掘分类算法.该算法首先预选有效的候选支持向量,减小训练样本数目,提高训练速度;其次定义... 针对模糊支持向量机(FSVM)应用于数据挖掘分类中存在对大样本集训练速度慢以及对噪声点敏感影响分类正确率的问题,提出一种基于改进FSVM的数据挖掘分类算法.该算法首先预选有效的候选支持向量,减小训练样本数目,提高训练速度;其次定义一种新的隶属度函数,增强支持向量对构建模糊支持向量机的作用;最后将近邻样本密度应用于隶属度函数设计,降低噪声点或野值点对分类的影响提高分类正确率.实验结果表明,该算法在训练样本数目较大时训练速度和分类正确率都有提高. 展开更多
关键词 数据挖掘 分类算法 模糊支持向量机(FSVM) 近邻样本密度
下载PDF
基于SVM分类的边缘提取算法 被引量:2
7
作者 张萍 王琳 游星 《成都理工大学学报(自然科学版)》 CAS CSCD 北大核心 2017年第2期247-252,共6页
通过分析同类数据点在空间中的几何形态,从数据点集所构成几何形态的凹凸性着手,提出边界提取算法并对高维数据进行分类。针对现实生活中的高维数据,利用局部线性嵌入将数据进行降维处理,得到低维特征数据。在此基础上,对于单分类数据集... 通过分析同类数据点在空间中的几何形态,从数据点集所构成几何形态的凹凸性着手,提出边界提取算法并对高维数据进行分类。针对现实生活中的高维数据,利用局部线性嵌入将数据进行降维处理,得到低维特征数据。在此基础上,对于单分类数据集,用数据集表面的点的近邻样本与过该点的切平面之间的关系寻找边界点;对于多分类数据集,利用贝叶斯后验概率来寻找边界重复的点,以此更快达到提取边界点的目的。由此可以粗略筛选出边界点。为去除不重要的边界点,降低分类误差,通过构造最优超平面和支持向量机对边界点赋予权重,并设置阈值去除不重要的边界点,由此达到用较少的边界点准确分类数据的目的。通过100个测试样本进行分类测试并计算其分类准确率,验证了此分类方法的可行性。 展开更多
关键词 局部线性嵌入 近邻样本 贝叶斯后验概率 支持向量 边界提取算法
下载PDF
基于双层结构的加速K-NN分类方法 被引量:3
8
作者 王晓 赵丽 《计算机工程与设计》 北大核心 2018年第4期1071-1077,共7页
在传统K-NN分类中,对于每个待测样本均需计算并寻找k个决策近邻,分类效率较低。针对该问题,提出一种双层结构的加速K-NN分类(K-NN classification based on double-layer structure,KNN_DL)方法。将正类和负类样本分别划分为多个不同子... 在传统K-NN分类中,对于每个待测样本均需计算并寻找k个决策近邻,分类效率较低。针对该问题,提出一种双层结构的加速K-NN分类(K-NN classification based on double-layer structure,KNN_DL)方法。将正类和负类样本分别划分为多个不同子集,计算每个子集的中心和半径。当新样本进入时,选择k个决策近邻子集,若其具有相同的类别标签,将该样本标记为相应类别;反之,选择决策近邻子集中最近的k个决策近邻。这种双层结构的加速方式,压缩待测样本的决策近邻规模,提高效率。实验结果表明,KNN_DL方法能够获得较高的样本预测速度和较好的预测准确率。 展开更多
关键词 K-NN分类 决策近邻子集 决策近邻样本 中心 半径 KNN_DL方法
下载PDF
基于M-distance算法思想的优化加权KNN算法
9
作者 程勖 高雍政 郭芳 《大连理工大学学报》 CAS CSCD 北大核心 2021年第6期645-651,共7页
为快速对数据进行特征选择以实现精确分类,采用M-distance算法思想进行数据集簇聚类,对样本数据进行预处理;设计加权K近邻算法缩减样本间距并构建样本分类模型;采用模拟简谐振动的方法遍历样本数据,求解最优加权特征向量,实现样本分类.... 为快速对数据进行特征选择以实现精确分类,采用M-distance算法思想进行数据集簇聚类,对样本数据进行预处理;设计加权K近邻算法缩减样本间距并构建样本分类模型;采用模拟简谐振动的方法遍历样本数据,求解最优加权特征向量,实现样本分类.实验结果表明:设计的算法是正确的,分类模型是合理的.在样本数据特征中,分离出的消费者最为关心的前10个样本特征符合消费者的行为选择,说明算法设计有一定实用性. 展开更多
关键词 样本近邻 加权特征向量 谐振子 样本分类
下载PDF
LOCAL BAGGING AND ITS APPLICATIONON FACE RECOGNITION 被引量:1
10
作者 朱玉莲 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2010年第3期255-260,共6页
Bagging is not quite suitable for stable classifiers such as nearest neighbor classifiers due to the lack of diversity and it is difficult to be directly applied to face recognition as well due to the small sample si... Bagging is not quite suitable for stable classifiers such as nearest neighbor classifiers due to the lack of diversity and it is difficult to be directly applied to face recognition as well due to the small sample size (SSS) property of face recognition. To solve the two problems,local Bagging (L-Bagging) is proposed to simultaneously make Bagging apply to both nearest neighbor classifiers and face recognition. The major difference between L-Bagging and Bagging is that L-Bagging performs the bootstrap sampling on each local region partitioned from the original face image rather than the whole face image. Since the dimensionality of local region is usually far less than the number of samples and the component classifiers are constructed just in different local regions,L-Bagging deals with SSS problem and generates more diverse component classifiers. Experimental results on four standard face image databases (AR,Yale,ORL and Yale B) indicate that the proposed L-Bagging method is effective and robust to illumination,occlusion and slight pose variation. 展开更多
关键词 face recognition local Bagging (L-Bagging) small sample size (SSS) nearest neighbor classifiers
下载PDF
一种基于近邻稀疏表示的人脸识别新方法 被引量:7
11
作者 施志刚 蒋玲 《重庆师范大学学报(自然科学版)》 CAS CSCD 北大核心 2016年第6期106-113,共8页
稀疏表示近些年来被广泛用于人脸识别。由于在现实中,同类图像之间往往不可避免存在光照、姿态、甚至遮挡等差异,如果使用这些有各种差异的图像样本去表示某一特定状态下的图像,则表示的效果势必会受到影响。为进一步提高稀疏表示在人... 稀疏表示近些年来被广泛用于人脸识别。由于在现实中,同类图像之间往往不可避免存在光照、姿态、甚至遮挡等差异,如果使用这些有各种差异的图像样本去表示某一特定状态下的图像,则表示的效果势必会受到影响。为进一步提高稀疏表示在人脸识别中的性能,基于原始协同分类(CRC)算法,引入近邻思想,即在各类训练样本中分别寻找与测试样本相近的若干样本,以构建新的近邻样本集;在此基础上进行协同表示,并利用每类样本系数分别重构待测样本,最后基于重构样本集再次协同表示。这种基于近邻样本的二次稀疏重构表示法,使识别更精确,并在一定程度上提升了运行效率。在ORL,YALE,FERET及AR人脸数据库上通过仿真验证了该方法的有效性。 展开更多
关键词 稀疏表示 协同分类 人脸识别 遮挡 近邻样本 二次稀疏重构
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部