期刊文献+
共找到66篇文章
< 1 2 4 >
每页显示 20 50 100
Single-atom catalysts based on polarization switching of ferroelectric In_(2)Se_(3) for N_(2) reduction
1
作者 Nan Mu Tingting Bo +3 位作者 Yugao Hu Ruixin Xu Yanyu Liu Wei Zhou 《Chinese Journal of Catalysis》 SCIE CAS CSCD 2024年第8期244-257,共14页
The polarization switching plays a crucial role in controlling the final products in the catalytic pro-cess.The effect of polarization orientation on nitrogen reduction was investigated by anchoring transition metal a... The polarization switching plays a crucial role in controlling the final products in the catalytic pro-cess.The effect of polarization orientation on nitrogen reduction was investigated by anchoring transition metal atoms to form active centers on ferroelectric material In_(2)Se_(3).During the polariza-tion switching process,the difference in surface electrostatic potential leads to a redistribution of electronic states.This affects the interaction strength between the adsorbed small molecules and the catalyst substrate,thereby altering the reaction barrier.In addition,the surface states must be considered to prevent the adsorption of other small molecules(such as *O,*OH,and *H).Further-more,the V@↓-In_(2)Se_(3) possesses excellent catalytic properties,high electrochemical and thermody-namic stability,which facilitates the catalytic process.Machine learning also helps us further ex-plore the underlying mechanisms.The systematic investigation provides novel insights into the design and application of two-dimensional switchable ferroelectric catalysts for various chemical processes. 展开更多
关键词 In_(2)Se_(3) monolayer Density functional theory Ferroelectric switching Single atom catalysts Nitrogen reduction reaction Machine learning
下载PDF
Recent Advances in Transition Metal-Based Catalysts for Electrocatalytic Nitrate Reduction Reaction
2
作者 LUO Hongxia CHEN Jun YANG Jianping 《Journal of Donghua University(English Edition)》 CAS 2024年第4期333-348,共16页
The accumulation of excessive nitrate in the atmosphere not only jeopardizes human health but also disrupts the balance of the nitrogen cycle in the ecosystem.Among various nitrate removal technologies,electrocatalyti... The accumulation of excessive nitrate in the atmosphere not only jeopardizes human health but also disrupts the balance of the nitrogen cycle in the ecosystem.Among various nitrate removal technologies,electrocatalytic nitrate reduction reaction(eNO_(3)RR)has been widely studied for its advantages of being eco-friendly,easy to operate,and controllable under environmental conditions with renewable energy as the driving force.Transition metal-based catalysts(TMCs)have been widely used in electrocatalysis due to their abundant reserves,low costs,easy-to-regulate electronic structure and considerable electrochemical activity.In addition,TMCs have been extensively studied in terms of the kinetics of the nitrate reduction reaction,the moderate adsorption energy of nitrogen-containing species and the active hydrogen supply capacity.Based on this,this review firstly discusses the mechanism as well as analyzes the two main reduction products(N_(2)and NH_(3))of eNO_(3)RR,and reveals the basic guidelines for the design of efficient nitrate catalysts from the perspective of the reaction mechanism.Secondly,this review mainly focuses on the recent advances in the direction of eNO_(3RR)with four types of TMCs,Fe,Co,Ni and Cu,and unveils the interfacial modulation strategies of Fe,Co,Ni and Cu catalysts for the activity,reaction pathway and stability.Finally,reasonable suggestions and opportunities are proposed for the challenges and future development of eNO_(3)RR.This review provides far-reaching implications for exploring cost-effective TMCs to replace high-cost noble metal catalysts(NMCs)for eNO_(3)RR. 展开更多
关键词 electrocatalysis nitrate reduction reaction transition metal-based catalyst(TMC) reaction mechanism nitrogen cycle
下载PDF
Mechano-chemical sulfidization of zinc oxide by grinding with sulfur and reductive additives 被引量:8
3
作者 柴立元 梁彦杰 +5 位作者 柯勇 闵小波 唐崇俭 张海静 谢先德 袁翠玉 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第4期1129-1138,共10页
A novel process for sulfidation of ZnO by co-grinding with sulfur and reductive additives (P, Fe, A1, and Mg) was developed. The sulfidation extent of ZnO with the addition of P, Fe, A1 or Mg can reach 85.2%, 81.6%,... A novel process for sulfidation of ZnO by co-grinding with sulfur and reductive additives (P, Fe, A1, and Mg) was developed. The sulfidation extent of ZnO with the addition of P, Fe, A1 or Mg can reach 85.2%, 81.6%, 96.7% and 92.6% after grinding for 4, 6, 1 and 1 h, respectively. Based on the chemical phase composition analysis and morphological characteristics of sulfidized products by XRD, SEM and TEM, a possible reaction mechanism, mechanically induced self-propagating reaction (MSR), was proposed to explain the sulfidization reaction. In addition, the floatability of sulfidized products was investigated for the recovery of metal sulfide and ZnS can be concentrated with a high concentration ratio and concentrate grade. By using the sulfidizing process, it is expected that the recovery of zinc from the wastes or purification of heavy-metal-containing hazardous residues is technically feasible. 展开更多
关键词 mechano-chemical sulfidization zinc oxide reductive additives self-propagating reaction FLOTATION
下载PDF
Methanol Tolerant Non-noble Metal Co-C-N Catalyst for Oxygen Reduction Reaction Using Urea as Nitrogen Source 被引量:3
4
作者 司玉军 陈昌国 +1 位作者 尹伟 蔡慧 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2010年第3期331-334,I0002,共5页
A non-noble metal oxygen reduction reaction (ORR) catalyst labeled as Co-C-N(800) was synthesized by heat-treating a mixture of urea, cobalt chloride and acetylene black for 2 h at 800 ℃ in an inert nitrogen atmo... A non-noble metal oxygen reduction reaction (ORR) catalyst labeled as Co-C-N(800) was synthesized by heat-treating a mixture of urea, cobalt chloride and acetylene black for 2 h at 800 ℃ in an inert nitrogen atmosphere. X-ray diffraction pattern indicates that a metallic β-Co is generated after the heat-treating process. The results from cyclic voltammograms show that the obtained Co-C-N(800) catalyst has good ORR catalytic activity in 0.5 mol/L H2SO4 solution. The catalyst is also good at methanol tolerance and stability in the acidic solution. 展开更多
关键词 Direct methanol fuel ceil Oxygen reduction reaction CATALYST Non-noble metal Methanol resistance
下载PDF
NaClO与KClO_3氧化性强弱的探讨
5
作者 李静 《柳州师专学报》 2004年第1期121-122,共2页
就NaClO与KClO3在相同的反应条件下,分别与相同的还原剂反应和改变其电极电势所产生的不同变化,以及各自的特殊性质,讨论了它们的氧化性。
关键词 次氯酸钠 氯酸钾 氧化性 NACLO KClO3 还原剂反应
下载PDF
Ni-catalyzed direct carboxylation of unactivated alkyl electrophiles with carbon dioxide
6
作者 张文珍 郭春晓 吕小兵 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2016年第2期215-217,共3页
Carbon dioxide is a cheap, abundant and renewable C1 building block. Over the last two decades, considerable re- search efforts have been devoted to developing new reactions for the efficient incorporation of carbon d... Carbon dioxide is a cheap, abundant and renewable C1 building block. Over the last two decades, considerable re- search efforts have been devoted to developing new reactions for the efficient incorporation of carbon dioxide into a broad range of compounds for the production of value-added materi- als [1]. Notably, these efforts have culminated in the develop- ment of several transition-metal-catalyzed methods capable of providing access to numerous synthetically important carbox- ylic acids and derivatives using carbon dioxide as a carboxyla- tive reagent [2]. 展开更多
关键词 Atmospheric pressure CARBOXYLATION Catalysis Nickel
下载PDF
Preparation of Nitrogen-Doped Carbon Catalyst to Oxygen Reduction Reaction and Influence of Protective Gas Flowing on Its Activity
7
作者 熊中平 司玉军 +2 位作者 余鸿 李敏娇 陈茂学 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2016年第2期255-259,I0002,共6页
A non-precious metal catalyst MnHMTA/C to oxygen reduction reaction was prepared by py- rolyzing a precursor from manganese chloride, hexamethylenetetramine and acetylene black in nitrogen gas atmosphere. The effect o... A non-precious metal catalyst MnHMTA/C to oxygen reduction reaction was prepared by py- rolyzing a precursor from manganese chloride, hexamethylenetetramine and acetylene black in nitrogen gas atmosphere. The effect of heat treatment temperature and flowing of nitrogen gas were investigated. A catalyst with the highest activity can be obtained at 700 ℃. Mn(Ⅱ) ion was changed to MnO in heat treatment, which improved the catalytic activity of the catalyst. Hexamethylenetetramine takes part in the formation of active site of the catalyst as its decomposed gases. The flowing of protective gas takes the decomposed gases out of the tube furnace and brings negative effect on the catalytic activity of the MnHMTA/C catalyst. 展开更多
关键词 Oxygen reduction reaction Non-precious metal catalyst MANGANESE Protective gas flowing
下载PDF
Co_3O_4 supported on N,P-doped carbon as a bifunctional electrocatalyst for oxygen reduction and evolution reactions 被引量:6
8
作者 黄颖彬 张敏 +2 位作者 柳鹏 程发良 王立世 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2016年第8期1249-1256,共8页
Noble metals, such as platinum, ruthenium and iridium‐group metals, are often used as oxygen reduction or evolution reaction (ORR/OER) electrocatalysts. To reduce the cost and provide an application of bifunctional... Noble metals, such as platinum, ruthenium and iridium‐group metals, are often used as oxygen reduction or evolution reaction (ORR/OER) electrocatalysts. To reduce the cost and provide an application of bifunctional catalysis, in this work, cobalt oxide supported on nitrogen and phospho‐rus co‐doped carbon (Co3O4/NPC) was fabricated and examined as a bifunctional electrocatalyst for OER and ORR. To prepare Co3O4/NPC, NPC was pyrolyzed from melamine and phytic acid support‐ed on carbon, followed by the solvothermal synthesis of Co3O4 on NPC. Linear sweep voltammetry was used to evaluate the activity for OER and ORR. For OER, Co3O4/NPC showed an onset potential of 0.54 V (versus the saturated calomel electrode) and a current density of 21.95 mA/cm2 at 0.80 V, which was better than both Co3O4/C and NPC. The high activity of Co3O4/NPC was attributed to a synergistic effect of the N, P co‐dopants and Co3O4. For ORR, Co3O4/NPC exhibited an activity close to commercial Pt/C in terms of the diffusion limited current density (–4.49 vs–4.76 mA/cm2 at–0.80 V), and Co3O4 played the key role for the catalysis. Chronoamperometry (current versus time) was used to evaluate the stability, which showed that Co3O4/NPC maintained 46%current after the chronoamperometry test for OER and 95% current for ORR. Overall, Co3O4/NPC exhibited high activity and improved stability for both OER and ORR. 展开更多
关键词 Cathode catalyst Oxygen reduction reaction Oxygen evolution reaction Doped carbon COBALT
下载PDF
Preparation of nitrogen-doped carbon nanoblocks with high electrocatalytic activity for oxygen reduction reaction in alkaline solution 被引量:2
9
作者 张亭亭 何传生 +1 位作者 黎琳波 林雨青 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2016年第8期1275-1282,共8页
The oxygen reduction reaction (ORR) is traditionally performed using noble‐metals catalysts, e.g. Pt. However, these metal‐based catalysts have the drawbacks of high costs, low selectivity, poor stabili‐ties, and... The oxygen reduction reaction (ORR) is traditionally performed using noble‐metals catalysts, e.g. Pt. However, these metal‐based catalysts have the drawbacks of high costs, low selectivity, poor stabili‐ties, and detrimental environmental effects. Here, we describe metal‐free nitrogen‐doped carbon nanoblocks (NCNBs) with high nitrogen contents (4.11%), which have good electrocatalytic proper‐ties for ORRs. This material was fabricated using a scalable, one‐step process involving the pyrolysis of tris(hydroxymethyl)aminomethane (Tris) at 800℃. Rotating ring disk electrode measurements show that the NCNBs give a high electrocatalytic performance and have good stability in ORRs. The onset potential of the catalyst for the ORR is-0.05 V (vs Ag/AgCl), the ORR reduction peak potential is-0.20 V (vs Ag/AgCl), and the electron transfer number is 3.4. The NCNBs showed pronounced electrocatalytic activity, improved long‐term stability, and better tolerance of the methanol crosso‐ver effect compared with a commercial 20 wt%Pt/C catalyst. The composition and structure of, and nitrogen species in, the NCNBs were investigated using Fourier‐transform infrared spectroscopy, scanning electron microscopy, X‐ray photoelectron spectroscopy, and X‐ray diffraction. The pyroly‐sis of Tris at high temperature increases the number of active nitrogen sites, especially pyridinic nitrogen, which creates a net positive charge on adjacent carbon atoms, and the high positive charge promotes oxygen adsorption and reduction. The results show that NCNBs prepared by pyrolysis of Tris as nitrogen and carbon sources are a promising ORR catalyst for fuel cells. 展开更多
关键词 Nitrogen-doped carbon nanoblock Trihydroxymethyl aminomethane ELECTROCATALYST Oxygen reduction reaction NANOCATALYST
下载PDF
A high performance non-noble metal electrocatalyst for the oxygen reduction reaction derived from a metal organic framework 被引量:6
10
作者 白杨芝 衣宝廉 +4 位作者 李佳 蒋尚峰 张洪杰 邵志刚 宋玉江 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2016年第7期1127-1133,共7页
The development of a non-precious metal electrocatalyst (NPME) with a performance superior to commercial Pt/C for the oxygen reduction reaction (ORR) is important for the commercialization of fuel cells. We report... The development of a non-precious metal electrocatalyst (NPME) with a performance superior to commercial Pt/C for the oxygen reduction reaction (ORR) is important for the commercialization of fuel cells. We report the synthesis of a NPME by heat-treating Co-based metal organic frameworks (ZIF-67) with a small average size of 44 nm. The electrocatalyst pyrolyzed at 600 ~C showed the best performance and the performance was enhanced when it was supported on BP 2000. The resulting electrocatalyst was composed of 10 nm Co nanoparticles coated by 3-12 layers of N doped graphite layers which as a whole was embedded in a carbon matrix. The ORR performance of the electrocatalyst was tested by rotating disk electrode tests in O2-saturated 0.1 mol/L KOH under ambient conditions. The electrocatalyst (1.0 mg/cm~] showed an onset potential of 1.017 V ([vs. RHE] and a half-wave potential of 0.857 V (vs. RHE], which showed it was as good as the commer- cial Pt/C (20 BgPt/cm2). Furthermore, the electrocatalyst possessed much better stability and re- sistance to methanol crossover than Pt/C. 展开更多
关键词 Fuel cellOxygen reduction reactionNon-precious metal catalystMetal organic frameworkAlkaline condition
下载PDF
Transfer and Reaction Performances of Selective Catalytic Reduction of NzO with CO over Monolith Catalysts 被引量:3
11
作者 代成娜 雷志刚 +2 位作者 王玉丽 张润铎 陈标华 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2013年第8期835-843,共9页
This work tries to identify the relationship between geometric configuration of monolith catalysts, and transfer and reaction performances for selective catalytic reduction of N2O with CO. Monolith catalysts with five... This work tries to identify the relationship between geometric configuration of monolith catalysts, and transfer and reaction performances for selective catalytic reduction of N2O with CO. Monolith catalysts with five different channel shapes (circle, regular triangle, rectangle, square and hexagon), was investigated to make a comprehensive comparison of their pressure drop, heat transfer Nu number, mass transfer Sh number and N2O conversion. It was found that monolith catalysts have a much lower pressure drop than that of traditional packed bed, and for monolith catalysts with different channel shapes, pressure drop decreases in the order of regular triangle > rectangle > square > hexagon > circle. The order of Nu is in regular triangle > rectangle ≈ square > hexagon > circle, similar to that of Sh. N2O conversion follows the order of regular triangle > rectangular ≈ square ≈ circle > hexagon. The results indicate that chemical reaction including internal diffusion is the controlling step in the selective catalytic reduction of N2O removal with CO. In addition, channel size and gas velocity also have influence on N2O conversion and pressure drop. 展开更多
关键词 selective catalytic reduction N2O conversion momentum transfer heat transfer mass transfer monolith catalysts mathematical modeling
下载PDF
P-doped mesoporous carbons for high-efficiency electrocatalytic oxygen reduction 被引量:8
12
作者 Hui Zhao Zhong-Pan Hu +2 位作者 Yun-Pei Zhu Li Ge Zhong-Yong Yuan 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2019年第9期1366-1374,共9页
Chemically modified carbonaceous materials have attained utmost attention in the fields of renewable energy storage and conversion,due to the controllable physicochemical properties,tailorable micro-/nanostructures,an... Chemically modified carbonaceous materials have attained utmost attention in the fields of renewable energy storage and conversion,due to the controllable physicochemical properties,tailorable micro-/nanostructures,and respectable stability.Herein,P-doped mesoporous carbons were synthesized by using F127 as the soft template,organophosphonic acid as the P source and phenolic resin as the carbon source.Small amounts of iron species were introduced to act as a graphitization catalyst.The synthesized carbons exhibit the well-defined wormhole-like pore structure featuring high specific surface area and homogenously doped P heteroatoms.Notably,introducing iron species during the synthesis process can optimize the textural properties and the degree of graphitization of carbon materials.The doping amount of P has an important effect on the porous structure and the defect degree,which correspondingly influence the active sites and the oxygen reduction reaction(ORR)activity.The resultant material presents superior catalytic activity for the ORR,together with remarkably enhanced durability and methanol tolerance in comparison with the commercial Platinum catalyst,demonstrating the possibility for its use in electrode materials and electronic nanodevices for metal-air batteries and fuel cells. 展开更多
关键词 P-DOPING Mesoporous carbons ELECTROCATALYST Oxygen reduction reaction
下载PDF
Simple synthesis of nitrogen‐doped carbon spheres as a highly efficient metal‐free electrocatalyst for the oxygen reduction reaction 被引量:4
13
作者 Jinhui Tong Wenyan Li +5 位作者 Lili Bo Wenhui Wang Yuliang Li Tao Li Qi Zhang Haiyan Fan 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2018年第6期1138-1145,共8页
In the present work, nitrogen‐doped carbon spheres were synthesized through a simple hydro‐thermal treatment using glucose and melamine as inexpensive carbon and nitrogen sources, re‐spectively. The ratio of melami... In the present work, nitrogen‐doped carbon spheres were synthesized through a simple hydro‐thermal treatment using glucose and melamine as inexpensive carbon and nitrogen sources, re‐spectively. The ratio of melamine to glucose and annealing temperature were optimized. The final optimal sample exhibited a catalytic activity for the oxygen reduction reaction(ORR) that was supe‐rior than that of commercial 20%Pt/C in 0.1 mol/L KOH. It revealed an onset potential of –22.6 mV and a half‐wave potential of –133.6 mV (vs. Ag/AgCl), which are 7.2 and 5.9 mV more positive than those of the 20%Pt/C catalyst, respectively, as well as a limiting current density of 4.6 mA/cm^2, which is 0.2 mA/cm^2 higher than that of the 20%Pt/C catalyst. The catalyst also exhibited higher stability and superior durability against methanol than 20%Pt/C. Moreover, ORRs on this catalyst proceed through a more effective 4 e^– path. The above mentioned superiority of the as‐prepared catalyst makes it promising for fuel cells. 展开更多
关键词 NITROGEN DOPING Carbon SPHERES Metal‐freecatalyst Oxygen reduction reaction
下载PDF
Kinetics of reductive leaching of manganese oxide ore using cellulose as reductant 被引量:6
14
作者 武芳芳 钟宏 +1 位作者 王帅 赖素凤 《Journal of Central South University》 SCIE EI CAS 2014年第5期1763-1770,共8页
The kinetics of reductive leaching of manganese from a low-grade manganese oxide ore were studied using cellulose as reductant in dilute sulfuric acid medium.It was found that when the stirring speed was higher than 2... The kinetics of reductive leaching of manganese from a low-grade manganese oxide ore were studied using cellulose as reductant in dilute sulfuric acid medium.It was found that when the stirring speed was higher than 200 r/min,the effect of gas film diffusion on manganese extraction efficiency could be neglected,and the kinetic behavior was investigated under the condition of elimination of external diffusion influence on the leaching process.Effects of leaching temperature,mass ratio of cellulose and ore,and the sulfuric acid concentration on manganese extraction efficiency were discussed.The kinetic data were analyzed based on the shrinking core model,which indicated that the leaching process was dominated by both ash layer diffusion and chemical reaction at the initial stage,with the progress of leaching reaction,the rate-controlling step switched to the ash layer diffusion.It was also concluded that the sulfuric acid concentration had the most significant influence on the leaching rate,the reaction orders with respect to the sulfuric acid concentration were 2.102 in the first 60 min,and 3.642 in the later 90 min,while the reaction orders for mass ratio of cellulose and ore were 0.660 and 0.724,respectively.An Arrhenius relationship was used to relate the temperature to the rate of leaching,from which apparent activation energies were calculated to be 46.487 kJ/mol and 62.290 kJ/mol at the two stages,respectively.Finally,the overall leaching rate equations for the manganese dissolution reaction with cellulose in sulphuric acid solution were developed.The morphological changes and mineralogical forms of the ore before and after the chemical treatment were discussed with the support of SEM and XRD analyses. 展开更多
关键词 manganese oxide ore: reductive leaching CELLULOSE KINETICS
下载PDF
Bifunctional electrocatalysts for rechargeable Zn-air batteries 被引量:7
15
作者 Yibo Guo Ya-Nan Chen +1 位作者 Huijuan Cui Zhen Zhou 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2019年第9期1298-1310,共13页
Zn-air batteries have attracted extensive attention for their unique features including high energy density,safety,low cost and environmental friendliness.However,due to their poor chargeability and low efficiency,the... Zn-air batteries have attracted extensive attention for their unique features including high energy density,safety,low cost and environmental friendliness.However,due to their poor chargeability and low efficiency,the practical application remains a challenge.The main obstacles are the intrinsic slow reaction kinetics on air cathodes,including oxygen reduction reaction during the discharging process and oxygen evolution reaction during the recharging process.Searching for efficient bifunctional oxygen electrocatalysts is key to solve these problems.In this review,the configuration and fundamental oxygen electrochemical reactions on air cathodes are briefly introduced for Zn-air batteries first.Then,the latest bifunctional oxygen electrocatalysts are summarized in detail.Finally,the perspectives are provided for the future investigations on bifunctional oxygen electrocatalysts. 展开更多
关键词 Bifunctional electrocatalysts Oxygen-reduction reaction Oxygen-evolution reaction Zn-air batteries Hybrid materials
下载PDF
Rational design and synthesis of one‐dimensional platinum‐based nanostructures for oxygen‐reduction electrocatalysis 被引量:8
16
作者 Huiting Niu Chenfeng Xia +5 位作者 Lei Huang Shahid Zaman Thandavarayan Maiyalagan Wei Guo Bo You Bao Yu Xia 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2022年第6期1459-1472,共14页
Fuel cells have attracted extensive attention due to their high conversion efficiency and environmental friendliness.However,their wider application is limited by the poor activity and high cost of platinum(Pt),which ... Fuel cells have attracted extensive attention due to their high conversion efficiency and environmental friendliness.However,their wider application is limited by the poor activity and high cost of platinum(Pt),which is widely used as the cathode catalyst to overcome the slow kinetics associated with oxygen reduction reaction(ORR).Pt‐based composites with one‐dimensional(1D)nanoarchitectures demonstrate great advantages towards efficient ORR catalysis.This review focuses on the recent advancements in the design and synthesis of 1D Pt‐based ORR catalysts.After introducing the fundamental ORR mechanism and the advanced 1D architectures,their synthesis strategies(template‐based and template‐free methods)are discoursed.Subsequently,their morphology and structure optimization are highlighted,followed by the superstructure assembly using 1D Pt‐based blocks.Finally,the challenges and perspectives on the synthesis innovation,structure design,physical characterization,and theoretical investigations are proposed for 1D Pt‐based ORR nanocatalysts.We anticipate this study will inspire more research endeavors on efficient ORR nanocatalysts in fuel cell application. 展开更多
关键词 Fuel cells Oxygen reduction reaction ELECTROCATALYST Pt alloy One‐dimensional
下载PDF
Production of Chiral Aromatic Alcohol by Asymmetric Reduction with Vegetable Catalyst 被引量:3
17
作者 CHANG Xu YANG Zhonghua +2 位作者 ZENG Rong YANG Gai YAN Jiabao 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2010年第6期1029-1033,共5页
Chiral aromatic alcohols are the key chiral building block for many important enantiopure pharmaceu-ticals. In this work,we studied asymmetric reduction of prochiral aromatic ketone to produce the corresponding chiral... Chiral aromatic alcohols are the key chiral building block for many important enantiopure pharmaceu-ticals. In this work,we studied asymmetric reduction of prochiral aromatic ketone to produce the corresponding chiral alcohol using vegetables as the biocatalyst. Acetophenone was chosen as the model substrate. The results in-dicate that acetophenone can be reduced to the corresponding chiral alcohols with high enantioselectivity by the chosen vegetables,i.e. apple(Malus pumila),carrot(Daucus carota),cucumber(Cucumis sativus),onion(Allium cepa),potato(Soanum tuberosum),radish(Raphanus sativus),and sweet potato(Ipomoea batatas) . In the reaction,R-1-phenylethanol is produced with apple,sweet potato and potato as the catalyst,while S-1-phenylethanol is the product with the other vegetables as the catalyst. In term of the enantioselectivity and reaction yield,carrot(D. ca-rota) is the best catalyst for this reaction. Furthermore,the reaction characteristics were studied in detail using car-rot(D. carota) as the biocatalyst. The effects of various factors on the reaction were investigated and the optimal reaction conditions were determined. Under the optimal reaction conditions(reaction time 50 h,substrate concen-tration 20 mmol·L-1,reaction temperature 35 °C and pH 7),95% of e.e.(to S-1-phenylethanol) and 85% chemical yield can be obtained. This work extends the biocatalyst for the asymmetric reduction reaction of prochiral aromatic ketones,and provides a novel potential route to produce enantiopure aromatic alcohols. 展开更多
关键词 BIOREDUCTION asymmetric reduction ACETOPHENONE plant catalysis chiral alcohol
下载PDF
CO_(2) reduction reaction pathways on single‐atom Co sites:Impacts of local coordination environment 被引量:2
18
作者 Haixia Gao Kang Liu +4 位作者 Tao Luo Yu Chen Junhua Hu Junwei Fu Min Liu 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2022年第3期832-838,共7页
Single‐atom catalysts have been proposed as promising electrocatalysts for CO_(2) reduction reactions(CO_(2)RR).Co‐N_(4) active sites have attracted wide attention owing to their excellent CO selectivity and activit... Single‐atom catalysts have been proposed as promising electrocatalysts for CO_(2) reduction reactions(CO_(2)RR).Co‐N_(4) active sites have attracted wide attention owing to their excellent CO selectivity and activity.However,the effect of the local coordination environment of Co sites on CO_(2) reduction reaction pathways is still unclear.In this study,we investigated the CO_(2) reduction reaction pathways on Co‐N_(4) sites supported on conjugated N_(4)‐macrocyclic ligands with 1,10‐phenanthroline subunits(Co‐N_(4)‐CPY)by density functional theory calculations.The local coordination environment of single‐atom Co sites with N substituted by O(Co‐N_(3)O‐CPY)and C(Co‐N_(3)C‐CPY)was studied for comparison.The calculation results revealed that both C and O coordination break the symmetry of the primary CoN_(4) ligand field and induce charge redistribution of the Co atom.For Co‐N_(4)‐CPY,CO was confirmed to be the main product of CO_(2)RR.HCOOH is the primary product of Co‐N_(3)O‐CPY because of the greatly increased energy barrier of CO_(2) to*COOH.Although the energy barrier of CO_(2) to*COOH is reduced on Co‐N_(3)C‐CPY,the desorption process of*CO becomes more difficult.CH3OH(or CH_(4))are obtained by further*CO hydrogenation reduction when using Co‐N_(3)C‐CPY.This work provides new insight into the effect of the local coordination environment of single‐atom sites on CO_(2) reduction reaction pathways. 展开更多
关键词 Coordination environment Product selectivity Single‐atom catalyst CO_(2)reduction reaction DFT calculation
下载PDF
Recent developments of nanocarbon based supports for PEMFCs electrocatalysts 被引量:4
19
作者 Junwei Chen Zuqiao Ou +3 位作者 Haixin Chen Shuqin Song Kun Wang Yi Wang 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2021年第8期1297-1326,共30页
Nanocarbons,widely and commonly used as supports for supported Pt-based electrocatalysts in PEMFCs,play a significant role in Pt dispersion and accessibility,further determining their corresponding electrocatalytic pe... Nanocarbons,widely and commonly used as supports for supported Pt-based electrocatalysts in PEMFCs,play a significant role in Pt dispersion and accessibility,further determining their corresponding electrocatalytic performance.This paper provides an overview of the nanoarchitectures and surface physicochemical properties of nanocarbons affecting the electrocatalyst performance,with an emphasis on both physical characteristics,including pore structure,and chemical properties,including heteroatom doping and functional carbon-based supports.This review discusses the recent progress in nanocarbon supports,guides the future development direction of PEMFC supports,and provides our own viewpoints for the future research and design of PEMFCs catalysts,advancing the commercialization of PEMFCs. 展开更多
关键词 Nanocarbon support Proton exchange membrane fuel cell ELECTROCATALYST Oxygen reduction reaction Methanol oxidation reaction
下载PDF
Phosphonate-derived nitrogen-doped cobalt phosphate/carbon nanotube hybrids as highly active oxygen reduction reaction electrocatalysts 被引量:6
20
作者 Hui Zhao Chen-Chen Weng +3 位作者 Jin-Tao Ren Li Ge Yu-Ping Liu Zhong-Yong Yuan 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2020年第2期259-267,共9页
The exploration of cost-effective non-noble-metal electrocatalysts is highly imperative to replace the state-of-the-art platinum-based catalysts for oxygen reduction reaction(ORR). Here, we prepared cobalt phosphonate... The exploration of cost-effective non-noble-metal electrocatalysts is highly imperative to replace the state-of-the-art platinum-based catalysts for oxygen reduction reaction(ORR). Here, we prepared cobalt phosphonate-derived N-doped cobalt phosphate/carbon nanotube hybrids(Co Pi C-N/CNTs) by hydrothermal treatment of N-containing cobalt phosphonate and oxidized carbon nanotubes(o-CNT) followed by high-temperature calcination under nitrogen atmosphere. The resultant Co Pi C-N/CNT exhibits a superior electrocatalytic performance for the ORR in alkaline media, which is equal to the commercial Pt/C catalyst in the aspect of half-wave potential, onset potential and diffuse limiting current density. Furthermore, the excellent tolerance to methanol and strong durability outperform those of commercial Pt/C. It is found that cobalt phosphonate-derived N-doped cobalt phosphate and the in-situ formed graphitic carbons play key roles on the activity enhancement. Besides, introducing a suitable amount of CNTs enhances the electronic conductivity and further contributes to the improved ORR performance. 展开更多
关键词 Metal phosphonate Metal phosphate Carbon nanotubes Oxygen reduction reaction ELECTROCATALYSIS
下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部