Being divided into three groups-strong, moderate and weak-according to the different kinetic parameters (Fmax, km, Cmin) of potassium uptake by crops, 21 cultivars of rice have been studied to find out the relationshi...Being divided into three groups-strong, moderate and weak-according to the different kinetic parameters (Fmax, km, Cmin) of potassium uptake by crops, 21 cultivars of rice have been studied to find out the relationships between their potassium nutrition and the oxidation-reduction status in the rhizosphere soils.Results show that, with no application of K fertilizer, there were higher contents of active reducing substances and ferrous iron in rhizosphere soils planted with cultivars, such as Zhongguo 91, week in absorbing potassium than in soils cropped with cultivars, Shanyou 64, stronger in absorbing potassium. As a result of K application, however, these toxic substances were decreased appreciably in the soil, particularly in the root zone where weakly K-absorbing cultivars were growing, and the parameter of soil redox (pH +pE) was increased, the most striking example of this being found in the rhizosphere soil where the more strongly K-absorbing cultivars were growing. On and close to the root surface in soils where rice plants were supplied with potassium fertilizer, rather more iron oxide had been accumulated compared with rice receiving no potash, and even greater amounts of red iron oxide precipitated on the rice root in neutral paddy soils. As shown by the concentration distribution of active reducing substances and ferrous iron in a microzone of the profile, the redox range of rice roots supplied with potassium may extend as far as several centimeters from the root surface. It can thus be seen that potassium nutrition exerts its effect first on the morphological properties of rice roots and their exudation of oxygen, then on the content of soluble oxygen and the count and species of oxygen-consuming microbes in the rhizosphere soil, and finally on the redox status of the soil.展开更多
文摘Being divided into three groups-strong, moderate and weak-according to the different kinetic parameters (Fmax, km, Cmin) of potassium uptake by crops, 21 cultivars of rice have been studied to find out the relationships between their potassium nutrition and the oxidation-reduction status in the rhizosphere soils.Results show that, with no application of K fertilizer, there were higher contents of active reducing substances and ferrous iron in rhizosphere soils planted with cultivars, such as Zhongguo 91, week in absorbing potassium than in soils cropped with cultivars, Shanyou 64, stronger in absorbing potassium. As a result of K application, however, these toxic substances were decreased appreciably in the soil, particularly in the root zone where weakly K-absorbing cultivars were growing, and the parameter of soil redox (pH +pE) was increased, the most striking example of this being found in the rhizosphere soil where the more strongly K-absorbing cultivars were growing. On and close to the root surface in soils where rice plants were supplied with potassium fertilizer, rather more iron oxide had been accumulated compared with rice receiving no potash, and even greater amounts of red iron oxide precipitated on the rice root in neutral paddy soils. As shown by the concentration distribution of active reducing substances and ferrous iron in a microzone of the profile, the redox range of rice roots supplied with potassium may extend as far as several centimeters from the root surface. It can thus be seen that potassium nutrition exerts its effect first on the morphological properties of rice roots and their exudation of oxygen, then on the content of soluble oxygen and the count and species of oxygen-consuming microbes in the rhizosphere soil, and finally on the redox status of the soil.