期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
镍火法熔炼高钙低硅渣提取铁的研究 被引量:5
1
作者 张振强 崔雅茹 +3 位作者 赵俊学 高晓婷 梁洪铭 王鹏飞 《钢铁研究学报》 CAS CSCD 北大核心 2013年第7期23-26,共4页
镍火法冶炼的高硅酸铁渣在综合利用中还原提取铁比较困难,通过在镍熔炼渣中适当增加CaO含量、减少SiO2含量以改善后续还原提取铁的热力学条件。在对所确定的新渣型对镍锍进行分离试验后,对熔炼终渣进行物相分析和还原提取铁试验,探讨了... 镍火法冶炼的高硅酸铁渣在综合利用中还原提取铁比较困难,通过在镍熔炼渣中适当增加CaO含量、减少SiO2含量以改善后续还原提取铁的热力学条件。在对所确定的新渣型对镍锍进行分离试验后,对熔炼终渣进行物相分析和还原提取铁试验,探讨了原渣和高钙低硅新渣型还原提取铁的不同。研究结果表明,高钙低硅新渣型终渣中铁主要以Ca(Fe,Mg)Si2O6以及MgFe2O4形式存在,50%以上的Fe以MgFe2O4的形式存在,其磁性以及还原性都比原渣中的(Fe,Mg)2SiO4要好,有利于其还原。与原渣的还原性相比,在试验条件下,当wCaO/wSiO2为0.80时,其还原率由48.53%提高到了57.45%。 展开更多
关键词 高钙低硅渣 物相分析 还原提取铁
原文传递
Manganese extraction from high-iron-content manganese oxide ores by selective reduction roasting-acid leaching process using black charcoal as reductant 被引量:10
2
作者 张元波 赵熠 +3 位作者 游志雄 段道显 李光辉 姜涛 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第7期2515-2520,共6页
Reduction roasting-acid leaching process was utilized to process high-iron-content manganese oxide ore using black charcoal as reductant. The results indicate that, compared with the traditional reductant of anthracit... Reduction roasting-acid leaching process was utilized to process high-iron-content manganese oxide ore using black charcoal as reductant. The results indicate that, compared with the traditional reductant of anthracite, higher manganese extraction efficiency is achieved at lower roasting temperature and shorter residence time. The effects of roasting parameters on the leaching efficiency of Mn and Fe were studied, and the optimal parameters are determined as follows: roasting temperature is 650 °C, residence time is 40 min, and black charcoal dosage is 10%(mass fraction). Under these conditions, the leaching efficiency of Mn reaches 82.37% while that of Fe is controlled below 7%. XRD results show that a majority of MnO2 and Fe2O3 in the raw ore are reduced to MnO and Fe3O4, respectively. 展开更多
关键词 manganese ore reduction roasting acid leaching black charcoal
下载PDF
Research into a Feature Selection Method for Hyperspectral Imagery Using PSO and SVM 被引量:9
3
作者 YANG Hua-chao ZHANG Shu-bi DENG Ka-zhong DU Pei-jun 《Journal of China University of Mining and Technology》 EI 2007年第4期473-478,共6页
Classification and recognition of hyperspectral remote sensing images is not the same as that of conventional multi-spectral remote sensing images. We propose,a novel feature selection and classification method for hy... Classification and recognition of hyperspectral remote sensing images is not the same as that of conventional multi-spectral remote sensing images. We propose,a novel feature selection and classification method for hyperspectral images by combining the global optimization ability of particle swarm optimization (PSO) algorithm and the superior classification performance of a support vector machine (SVM). Global optimal search performance of PSO is improved by using a chaotic optimization search technique. Granularity based grid search strategy is used to optimize the SVM model parameters. Parameter optimization and classification of the SVM are addressed using the training date corre-sponding to the feature subset. A false classification rate is adopted as a fitness function. Tests of feature selection and classification are carried out on a hyperspectral data set. Classification performances are also compared among different feature extraction methods commonly used today. Results indicate that this hybrid method has a higher classification accuracy and can effectively extract optimal bands. A feasible approach is provided for feature selection and classifica-tion of hyperspectral image data. 展开更多
关键词 hyperspectral remote sensing particle swarm optimization support vector machine feature extraction
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部