Limestone(CaCO3),which could promote sulfur fixation,was added to coal gangue during roasting in a circulating fluidized bed(CFB)boiler.CaO and CaSO_(4) were the main Ca-bearing minerals while metakaolinite was the ma...Limestone(CaCO3),which could promote sulfur fixation,was added to coal gangue during roasting in a circulating fluidized bed(CFB)boiler.CaO and CaSO_(4) were the main Ca-bearing minerals while metakaolinite was the major Al-bearing mineral in CFB slag.The effect of CaSO_(4) and CaO on the separation of alumina and silica from metakaolinite by reduction roasting−alkaline leaching process was studied.Results showed that metakaolinite was completely converted into hercynite and silica solid solutions(i.e.,quartz and cristobalite solid solutions)by reduction roasting with hematite.More than 95%of silica in the reduced specimen was removed by alkaline leaching.The addition of CaSO_(4) and CaO remarkably decreased the separation efficiency of alumina and silica in metakaolinite,which could be attributed to the formation of Si-bearing minerals:(1)Fayalite and anorthite were formed during the reduction roasting process;(2)Fayalite was stable while anorthite was converted into sodalite and wollastonite during the alkaline leaching process.This study demonstrates that sulfur in coal gangue should be fixed by treating the exhaust gas instead of controlling the combustion process of CFB to achieve the comprehensive recovery of silica and alumina from the CFB slag.展开更多
Titanium mineral was prepared from vanadium titanomagnetite concentrates by hydrogen reduction and acid leaching.The leaching behaviors of elements like Fe,V,Mn,Al,Mg,Ca,and Si were highly related to the reduction deg...Titanium mineral was prepared from vanadium titanomagnetite concentrates by hydrogen reduction and acid leaching.The leaching behaviors of elements like Fe,V,Mn,Al,Mg,Ca,and Si were highly related to the reduction degree.The phase compositions of the reduced materials and the leached residues were analyzed by XRD to identify the effect of reduction degree on the leaching mechanisms.The results showed that the concentrates were reduced to iron metal and titanomagnetite at 800-1000°C for 0.5 h,and the above elements of Fe and impurities were easily leached.Deeper reduction led to the formation of ilmenite and Mg-Al spinel,which hindered leaching.Mg-bearing anosovite appeared in the further reduced materials,and the leaching rates of impurities became much lower.An upgraded titanium mineral with a normalized TiO_(2) grade of 70.3%was achieved by H_(2) reduction at 850°C for 0.5 h and acid leaching,which is a satisfactory Ti resource for the preparation of titanium oxide by sulfate process.展开更多
The increasing demand for iron ore in the world causes the continuous exhaustion of magnetite resources.The utilization of high-phosphorus iron ore becomes the focus.With calcium carbonate(CaCO_(3)),calcium chloride(C...The increasing demand for iron ore in the world causes the continuous exhaustion of magnetite resources.The utilization of high-phosphorus iron ore becomes the focus.With calcium carbonate(CaCO_(3)),calcium chloride(CaCl_(2)),or calcium sulfate(CaSO_(4))as additive,the process of direct reduction and phosphorus removal of high-phosphorus iron ore(phosphorus mainly occurred in the form of Fe_(3)PO_(7) and apatite)was studied by using the technique of direct reductiongrinding-magnetic separation.The mechanism of calcium compounds to reduce phosphorus was investigated from thermodynamics,iron metallization degree,mineral composition and microstructure.Results showed that Fe_(3)PO_(7) was reduced to elemental phosphorus without calcium compounds.The iron-phosphorus alloy was generated by react of metallic iron and phosphorus,resulting in high phosphorus in reduced iron products.CaCO_(3) promoted the reduction of hematite and magnetite,and improved iron metallization degree,but inhibited the growth of metallic iron particles.CaCl_(2) strengthened the growth of iron particles.However,the recovery of iron was reduced due to the formation of volatile FeCl_(2).CaSO_(4) promoted the growth of iron particles,but the recovery of iron was drastically reduced due to the formation of non-magnetic FeS.CaCO_(3),CaCl_(2) or CaSO_(4) could react with Fe_(3)PO_(7) to form calcium phosphate(Ca_(3)(PO_(4))_(2)).With the addition of CaCO_(3),Ca_(3)(PO_(4))_(2) was closely combined with fine iron particles.It is difficult to separate iron and phosphorus by grinding and magnetic separation,resulting in the reduced iron product phosphorus content of 0.18%.In the presence of CaCl_(2) or CaSO_(4),the boundary between the generated Ca_(3)(PO_(4))_(2) and the metallic iron particles was obvious.Phosphorus was removed by grinding and magnetic separation,and the phosphorus content in the reduced iron product was less than 0.10%.展开更多
The effects of basicity and temperature on the reduction process of Hongge high-chromium vanadium-titanium magnetite(HCVTM)sinter were investigated in this work.The main characterization methods of X-ray fluorescence(...The effects of basicity and temperature on the reduction process of Hongge high-chromium vanadium-titanium magnetite(HCVTM)sinter were investigated in this work.The main characterization methods of X-ray fluorescence(XRF),X-ray diffraction(XRD),scanning electron microscope(SEM),and metallographic microscope were employed in this study.In this work,the reduction of HCVTM sinter with different temperature and basicity were experimented.The Fe,FeO,and TiO in reductive samples increase with increasing basicity and temperatures.The increase of basicity and temperature is favorable to the reduction of HCVTM sinter.The Fe phase has out-migration tendency to the surface of sinter while the perovskite and silicate phases have in-migration tendency to the inside of sinter.The reduction degradation index(RDI)decreases while the reduction index(RI)increases with increasing basicity.The RI increases from 67.14%to 82.09%with increasing temperature from 1073 K to 1373 K.展开更多
Direct reduction is an emerging technology for ferric bauxite utilization. However, because of sodium volatilization, its sodium carbonate consumption is considerably higher than that in ordinary bauxite processing te...Direct reduction is an emerging technology for ferric bauxite utilization. However, because of sodium volatilization, its sodium carbonate consumption is considerably higher than that in ordinary bauxite processing technology. TG-DSC and XRD were applied to detecting phase transformation and mass loss in direct reduction to reveal the mechanism on sodium volatilization. The results show that the most significant influence factor of ferric bauxite on sodium volatilization in direct reduction system is its iron content. Sodium volatilization is probably ascribed to the instability of amorphous substances structure. Amorphous substances are the intermediate-products of the reaction, and the volatilization rate of sodium increases with its generating rate. These amorphous substances are volatile, thus, more sodium is volatilized with its generation. A small amount of amorphous substances are generated in the reaction between Na2CO3 and Al2O3; thus, only 3.15% of sodium is volatilized. Similarly, the volatilization rate is 1.87% in the reaction between Na2CO3 and SiO2. However, the volatilization rate reaches 7.64% in the reaction between Na2CO3 and Fe2O3 because of the generation of a large amount of amorphous substances.展开更多
Pyrolusite reduction processes by three major biomass components cellulose,hemicelluloses and lignin,represented by CP,HP and LP,respectively,were investigated by thermogravimetric analyzer coupled with Fourier transf...Pyrolusite reduction processes by three major biomass components cellulose,hemicelluloses and lignin,represented by CP,HP and LP,respectively,were investigated by thermogravimetric analyzer coupled with Fourier transform infrared spectrometry(TG-FTIR).The Sestak-Berggren(SB) equation was used to evaluate the kinetics of reduction processes.TG analysis reveals that the main reduction processes occur at 250-410 ℃,220-390 ℃,and 190-410 ℃ for CP,HP,and LP,respectively.FT-IR and XRD results indicate that various reducing volatiles(e.g.aldehydes,furans,ketones and alcohols) are produced from the pyrolysis with the three major components,which directly reduce MnO_2 in ore to MnO.The processes are described by the SB equation with three parameters(m,n,p).Their non-zero values suggest that pyrolusite reduction is controlled by the diffusion of reducing gaseous products through an ash/inert layer associated with minerals.The apparent activation energies for pyrolusite reduction by CP,HP and LP are 40.48,25.70 and 40.10 kJ·mol^(-1),respectively.展开更多
We investigated the reduction of lepidocrocite(γ-FeOOH) by Shewanella oneidensis MR-1 in the presence and absence of Cd. The results showed that Cd^(2+) retarded microbial reduction of γ-Fe OOH and avoided formation...We investigated the reduction of lepidocrocite(γ-FeOOH) by Shewanella oneidensis MR-1 in the presence and absence of Cd. The results showed that Cd^(2+) retarded microbial reduction of γ-Fe OOH and avoided formation of magnetite. The inhibitory effect on γ-Fe OOH transformation may not result from Cd^(2+) toxicity to the bacterium; it rather was probably due to competitive adsorption between Cd^(2+) and Fe^(2+) on γ-Fe OOH as its surface reduction catalyzed by adsorbed Fe^(2+) was eliminated by adsorption of Cd^(2+).展开更多
The Obrochishte deposit located in the Republic of Bulgaria has considerable reserves of relatively poor carbonate manganese ore. At the same time, in the country there are operative outputs for the production of sulp...The Obrochishte deposit located in the Republic of Bulgaria has considerable reserves of relatively poor carbonate manganese ore. At the same time, in the country there are operative outputs for the production of sulphuric acid where vanadium catalyst is deactivated and discharged, polluting the environment. The utilization of these materials requires their consolidation to proper sizes with regard to the next processing, as the most suitable method for joint consolidation is agglomeration. The present work explores the preliminary calculations for obtaining agglomerate and obtaining an alloy with high and low carbon content, through carbothermic and aluminothermic agglomerate reduction.展开更多
Solid wastes derived from metallurgical industries pose a significant threat to environment. The utilization and disposal of these solid wastes are the major concern in the world. Semi-coke generated in coal-based dir...Solid wastes derived from metallurgical industries pose a significant threat to environment. The utilization and disposal of these solid wastes are the major concern in the world. Semi-coke generated in coal-based direct reduction process of iron ore is a by-product and its suitable utilization is not available so far. In order to handle it properly, the characteristics of this by-product were comprehensively investigated. A series of analysis methods were used to demonstrate its mineral compositions, petrography and physico-chemical properties. The results reveal that the semi-coke has poor washability. The fixed carbon content of semi-coke reaches 76.11% and the gross calorific value is 28.10 MJ/kg, both of which are similar to those of traditional sinter coke breeze. Also, semi-coke ash possesses lower content of SiO2, Al2O3, S and higher content of CaO and MgO, which could improve the strength of sinter ore when partially substituting for coke breeze in sintering. Semi-coke features well-development porous structure and higher reaction activity, which predicts that the sintering speed could be elevated to some extent when employing it as a partial replacement of coke breeze, so the studies further suggest that the potential adverse effect of the high reactivity on sintering process could be weakened by adequately coarsening the semi-coke's particle size.展开更多
对印度尼西亚海砂矿氧化性球团氢气还原的规律做了较详细的研究.实验采用失重的方法,通过对反应过程的物相变化、热力学以及动力学方面的分析,探究了海砂球团矿氢气还原的机理.结果表明:温度在800℃和850℃,还原反应的最终产物主要是Fe ...对印度尼西亚海砂矿氧化性球团氢气还原的规律做了较详细的研究.实验采用失重的方法,通过对反应过程的物相变化、热力学以及动力学方面的分析,探究了海砂球团矿氢气还原的机理.结果表明:温度在800℃和850℃,还原反应的最终产物主要是Fe Ti O3,整个反应限制环节是由两个不同阶段的过程组成,反应开始阶段由界面化学反应控制,之后由界面化学反应与内扩散共同控制;在900、950和1000℃三个温度下,反应产物中有钛氧化物出现,整个还原反应由三个不同的限制性环节组成,开始由界面化学反应控制,反应中间阶段是由界面化学反应和内扩散共同控制,反应后期则是由内扩散控制为主.展开更多
The amount of sulfur in SO2 discharged in volcanic eruptions exceeds that available for degassing from the erupted magma.This geological conun drum,known as the"sulfur excess",has been the subject of conside...The amount of sulfur in SO2 discharged in volcanic eruptions exceeds that available for degassing from the erupted magma.This geological conun drum,known as the"sulfur excess",has been the subject of considerable interests but remains an open question.Here,in a systematic computational investigation of sulfur-oxygen compounds under pressure,a hitherto unknown S_(3)O_(4) compound containing a mixture of sulfur oxidation states+11 and+IV is predicted to be stable at pressures above 79 GPa.We speculate that S_(3)O_(4) may be produced via redox reactions involving subducted S-bearing minerals(e.g.,sulfates and sulfides)with iron and goethite under high-pressure conditions of the deep lower mantle,decomposing to SO2 and S at shallow depths.S_(3)O_(4) may thus be a key intermediate in promoting decomposition of sulfates to release SO2,offering an alter native source of excess sulfur released during explosive eruptions.These findings provide a possible resolution of the"excess sulfur degassing"paradox and a viable mechanism for the exchange of S between Earth's surface and the lower mantle in the deep sulfur cycle.展开更多
基金the financial supports from the National Natural Science Foundation of China (Nos. 52004194, 51874219)the China Postdoctoral Science Foundation (No. 2019M662733)。
文摘Limestone(CaCO3),which could promote sulfur fixation,was added to coal gangue during roasting in a circulating fluidized bed(CFB)boiler.CaO and CaSO_(4) were the main Ca-bearing minerals while metakaolinite was the major Al-bearing mineral in CFB slag.The effect of CaSO_(4) and CaO on the separation of alumina and silica from metakaolinite by reduction roasting−alkaline leaching process was studied.Results showed that metakaolinite was completely converted into hercynite and silica solid solutions(i.e.,quartz and cristobalite solid solutions)by reduction roasting with hematite.More than 95%of silica in the reduced specimen was removed by alkaline leaching.The addition of CaSO_(4) and CaO remarkably decreased the separation efficiency of alumina and silica in metakaolinite,which could be attributed to the formation of Si-bearing minerals:(1)Fayalite and anorthite were formed during the reduction roasting process;(2)Fayalite was stable while anorthite was converted into sodalite and wollastonite during the alkaline leaching process.This study demonstrates that sulfur in coal gangue should be fixed by treating the exhaust gas instead of controlling the combustion process of CFB to achieve the comprehensive recovery of silica and alumina from the CFB slag.
基金financially supported by the Beijing Natural Science Foundation, China (No. 2192056)the National Natural Science Foundation of China (No. 51771179)+1 种基金the National Key R&D Program of China (No. 2018YFC1900505)The financial supports from the Youth Innovation Promotion Association CAS and the CAS Interdisciplinary Innovation Team
文摘Titanium mineral was prepared from vanadium titanomagnetite concentrates by hydrogen reduction and acid leaching.The leaching behaviors of elements like Fe,V,Mn,Al,Mg,Ca,and Si were highly related to the reduction degree.The phase compositions of the reduced materials and the leached residues were analyzed by XRD to identify the effect of reduction degree on the leaching mechanisms.The results showed that the concentrates were reduced to iron metal and titanomagnetite at 800-1000°C for 0.5 h,and the above elements of Fe and impurities were easily leached.Deeper reduction led to the formation of ilmenite and Mg-Al spinel,which hindered leaching.Mg-bearing anosovite appeared in the further reduced materials,and the leaching rates of impurities became much lower.An upgraded titanium mineral with a normalized TiO_(2) grade of 70.3%was achieved by H_(2) reduction at 850°C for 0.5 h and acid leaching,which is a satisfactory Ti resource for the preparation of titanium oxide by sulfate process.
基金Projects(51874017,52174236)supported by the National Natural Science Foundation of China。
文摘The increasing demand for iron ore in the world causes the continuous exhaustion of magnetite resources.The utilization of high-phosphorus iron ore becomes the focus.With calcium carbonate(CaCO_(3)),calcium chloride(CaCl_(2)),or calcium sulfate(CaSO_(4))as additive,the process of direct reduction and phosphorus removal of high-phosphorus iron ore(phosphorus mainly occurred in the form of Fe_(3)PO_(7) and apatite)was studied by using the technique of direct reductiongrinding-magnetic separation.The mechanism of calcium compounds to reduce phosphorus was investigated from thermodynamics,iron metallization degree,mineral composition and microstructure.Results showed that Fe_(3)PO_(7) was reduced to elemental phosphorus without calcium compounds.The iron-phosphorus alloy was generated by react of metallic iron and phosphorus,resulting in high phosphorus in reduced iron products.CaCO_(3) promoted the reduction of hematite and magnetite,and improved iron metallization degree,but inhibited the growth of metallic iron particles.CaCl_(2) strengthened the growth of iron particles.However,the recovery of iron was reduced due to the formation of volatile FeCl_(2).CaSO_(4) promoted the growth of iron particles,but the recovery of iron was drastically reduced due to the formation of non-magnetic FeS.CaCO_(3),CaCl_(2) or CaSO_(4) could react with Fe_(3)PO_(7) to form calcium phosphate(Ca_(3)(PO_(4))_(2)).With the addition of CaCO_(3),Ca_(3)(PO_(4))_(2) was closely combined with fine iron particles.It is difficult to separate iron and phosphorus by grinding and magnetic separation,resulting in the reduced iron product phosphorus content of 0.18%.In the presence of CaCl_(2) or CaSO_(4),the boundary between the generated Ca_(3)(PO_(4))_(2) and the metallic iron particles was obvious.Phosphorus was removed by grinding and magnetic separation,and the phosphorus content in the reduced iron product was less than 0.10%.
基金Project(2013CB632603)supported by the National Basic Research Program of ChinaProject(2015BAB19B02)supported by the National Key Technology R&D Program of ChinaProjects(51674084,51174051,51574082)supported by National Natural Science Foundation of China
文摘The effects of basicity and temperature on the reduction process of Hongge high-chromium vanadium-titanium magnetite(HCVTM)sinter were investigated in this work.The main characterization methods of X-ray fluorescence(XRF),X-ray diffraction(XRD),scanning electron microscope(SEM),and metallographic microscope were employed in this study.In this work,the reduction of HCVTM sinter with different temperature and basicity were experimented.The Fe,FeO,and TiO in reductive samples increase with increasing basicity and temperatures.The increase of basicity and temperature is favorable to the reduction of HCVTM sinter.The Fe phase has out-migration tendency to the surface of sinter while the perovskite and silicate phases have in-migration tendency to the inside of sinter.The reduction degradation index(RDI)decreases while the reduction index(RI)increases with increasing basicity.The RI increases from 67.14%to 82.09%with increasing temperature from 1073 K to 1373 K.
基金Project(51304012)supported by the National Natural Science Foundation of ChinaProject(2014M550845)supported by China Postdoctoral Science FoundationProject(KF13-05)supported by Open Foundation of the State Key Laboratory of Advanced Metallurgy(USTB),China
文摘Direct reduction is an emerging technology for ferric bauxite utilization. However, because of sodium volatilization, its sodium carbonate consumption is considerably higher than that in ordinary bauxite processing technology. TG-DSC and XRD were applied to detecting phase transformation and mass loss in direct reduction to reveal the mechanism on sodium volatilization. The results show that the most significant influence factor of ferric bauxite on sodium volatilization in direct reduction system is its iron content. Sodium volatilization is probably ascribed to the instability of amorphous substances structure. Amorphous substances are the intermediate-products of the reaction, and the volatilization rate of sodium increases with its generating rate. These amorphous substances are volatile, thus, more sodium is volatilized with its generation. A small amount of amorphous substances are generated in the reaction between Na2CO3 and Al2O3; thus, only 3.15% of sodium is volatilized. Similarly, the volatilization rate is 1.87% in the reaction between Na2CO3 and SiO2. However, the volatilization rate reaches 7.64% in the reaction between Na2CO3 and Fe2O3 because of the generation of a large amount of amorphous substances.
基金Supported by the National Natural Science Foundation of China(21166003)the Doctoral Foundation of Ministry of Education of China(20114501110004)
文摘Pyrolusite reduction processes by three major biomass components cellulose,hemicelluloses and lignin,represented by CP,HP and LP,respectively,were investigated by thermogravimetric analyzer coupled with Fourier transform infrared spectrometry(TG-FTIR).The Sestak-Berggren(SB) equation was used to evaluate the kinetics of reduction processes.TG analysis reveals that the main reduction processes occur at 250-410 ℃,220-390 ℃,and 190-410 ℃ for CP,HP,and LP,respectively.FT-IR and XRD results indicate that various reducing volatiles(e.g.aldehydes,furans,ketones and alcohols) are produced from the pyrolysis with the three major components,which directly reduce MnO_2 in ore to MnO.The processes are described by the SB equation with three parameters(m,n,p).Their non-zero values suggest that pyrolusite reduction is controlled by the diffusion of reducing gaseous products through an ash/inert layer associated with minerals.The apparent activation energies for pyrolusite reduction by CP,HP and LP are 40.48,25.70 and 40.10 kJ·mol^(-1),respectively.
基金financially supported by the National Natural Science Foundation of China(41601239)the Highlevel Leading Talent Introduction Program of GDAS,the China Postdoctoral Science Foundation(2016M600644)the"Pearl River Talents"Postdoctoral Program of Guangdong Province,and the National Key Research and Development Program of China(2016YFD0800703)
文摘We investigated the reduction of lepidocrocite(γ-FeOOH) by Shewanella oneidensis MR-1 in the presence and absence of Cd. The results showed that Cd^(2+) retarded microbial reduction of γ-Fe OOH and avoided formation of magnetite. The inhibitory effect on γ-Fe OOH transformation may not result from Cd^(2+) toxicity to the bacterium; it rather was probably due to competitive adsorption between Cd^(2+) and Fe^(2+) on γ-Fe OOH as its surface reduction catalyzed by adsorbed Fe^(2+) was eliminated by adsorption of Cd^(2+).
文摘The Obrochishte deposit located in the Republic of Bulgaria has considerable reserves of relatively poor carbonate manganese ore. At the same time, in the country there are operative outputs for the production of sulphuric acid where vanadium catalyst is deactivated and discharged, polluting the environment. The utilization of these materials requires their consolidation to proper sizes with regard to the next processing, as the most suitable method for joint consolidation is agglomeration. The present work explores the preliminary calculations for obtaining agglomerate and obtaining an alloy with high and low carbon content, through carbothermic and aluminothermic agglomerate reduction.
基金Project(2011GH561685)supported by the China Torch Program
文摘Solid wastes derived from metallurgical industries pose a significant threat to environment. The utilization and disposal of these solid wastes are the major concern in the world. Semi-coke generated in coal-based direct reduction process of iron ore is a by-product and its suitable utilization is not available so far. In order to handle it properly, the characteristics of this by-product were comprehensively investigated. A series of analysis methods were used to demonstrate its mineral compositions, petrography and physico-chemical properties. The results reveal that the semi-coke has poor washability. The fixed carbon content of semi-coke reaches 76.11% and the gross calorific value is 28.10 MJ/kg, both of which are similar to those of traditional sinter coke breeze. Also, semi-coke ash possesses lower content of SiO2, Al2O3, S and higher content of CaO and MgO, which could improve the strength of sinter ore when partially substituting for coke breeze in sintering. Semi-coke features well-development porous structure and higher reaction activity, which predicts that the sintering speed could be elevated to some extent when employing it as a partial replacement of coke breeze, so the studies further suggest that the potential adverse effect of the high reactivity on sintering process could be weakened by adequately coarsening the semi-coke's particle size.
文摘对印度尼西亚海砂矿氧化性球团氢气还原的规律做了较详细的研究.实验采用失重的方法,通过对反应过程的物相变化、热力学以及动力学方面的分析,探究了海砂球团矿氢气还原的机理.结果表明:温度在800℃和850℃,还原反应的最终产物主要是Fe Ti O3,整个反应限制环节是由两个不同阶段的过程组成,反应开始阶段由界面化学反应控制,之后由界面化学反应与内扩散共同控制;在900、950和1000℃三个温度下,反应产物中有钛氧化物出现,整个还原反应由三个不同的限制性环节组成,开始由界面化学反应控制,反应中间阶段是由界面化学反应和内扩散共同控制,反应后期则是由内扩散控制为主.
基金supported by the National Natural Science Foundation of China(12034009,91961204,11774127,12174142,11404128,11822404,52090024 and 11974134)the Program for Science and Technology Innovative Research Team of Jilin University。
文摘The amount of sulfur in SO2 discharged in volcanic eruptions exceeds that available for degassing from the erupted magma.This geological conun drum,known as the"sulfur excess",has been the subject of considerable interests but remains an open question.Here,in a systematic computational investigation of sulfur-oxygen compounds under pressure,a hitherto unknown S_(3)O_(4) compound containing a mixture of sulfur oxidation states+11 and+IV is predicted to be stable at pressures above 79 GPa.We speculate that S_(3)O_(4) may be produced via redox reactions involving subducted S-bearing minerals(e.g.,sulfates and sulfides)with iron and goethite under high-pressure conditions of the deep lower mantle,decomposing to SO2 and S at shallow depths.S_(3)O_(4) may thus be a key intermediate in promoting decomposition of sulfates to release SO2,offering an alter native source of excess sulfur released during explosive eruptions.These findings provide a possible resolution of the"excess sulfur degassing"paradox and a viable mechanism for the exchange of S between Earth's surface and the lower mantle in the deep sulfur cycle.