Gold stabilized on reducible oxide (CeO2 and FeOx) and irreducible oxide (γ‐Al2O3, SiO2, and HZSM‐5) were prepared by deposition precipitation method and tested for catalytic oxidation of formaldehyde (HCHO) ...Gold stabilized on reducible oxide (CeO2 and FeOx) and irreducible oxide (γ‐Al2O3, SiO2, and HZSM‐5) were prepared by deposition precipitation method and tested for catalytic oxidation of formaldehyde (HCHO) at room temperature under high GHSV of 600000 ml/(g·s). Au/γ‐Al2O3 cata‐lyst showed distinctive catalytic performance, presenting the highest initial HCHO conversion and stability. Correlating the reaction rate with Au particle size, there is a linear relationship, suggesting that the smaller Au particle size with higher dispersion possesses high reactivity for HCHO oxida‐tion. All the catalysts deactivated at high GHSV (600000 ml/(g·s)), but in a quite different rate. Re‐ducible oxide (CeO2 and FeOx) could stabilize gold through O linkage and therefore exhibits a better stability for HCHO oxidation reaction. However, the aggregation of gold particles occurred over Au/SiO2 and Au/HZSM‐5 catalysts, which result in the fast deactivation. Therefore, our results sug‐gest that the reducibility of the supports for Au catalysis has no direct influence on the activity, but affects the catalytic stability.展开更多
Nitrogen-doped carbon materials exhibiting high oxygen reduction reaction activity were prepared via the pyrolysis of a poly-p-phenylenediamine/carbon black composite. The as-synthesized cata- lyst showed excellent ca...Nitrogen-doped carbon materials exhibiting high oxygen reduction reaction activity were prepared via the pyrolysis of a poly-p-phenylenediamine/carbon black composite. The as-synthesized cata- lyst showed excellent catalytic activity in alkaline solution, and outperformed commercial Pt/C in KOH solution (0.1 mol/L), as demonstrated by the higher current density and the more positive half-wave potential. Scanning electron microscopy and N2 adsorption-desorption analyses indicated that a composite structure, in which the N-rich surface of the poly-p-phenylenediamine had an in- creased active center concentration and the high external surface area of the carbon black was conducive to the mass transport, is highly beneficial in terms of promoting the oxygen reduction reaction. However, the activity of this catalyst underwent an obvious decrease following exposure to air for 30 d. X-ray photoelectron spectroscopy showed that the oxygen content in the catalyst was increased by prolonged air exposure. O ls spectrum showed increases in the C:O and C-O compo- nents, suggesting that atmospheric oxygen reacted with the catalyst. This oxidation leaded to the deactivation of active center, thus the catalytic activity decreased. Based on these results, the stabil- ity in air of nitrogen-doped carbon materials must be taken into consideration when assessing ap- plications as alternatives to platinum-based materials.展开更多
Low optical absorption and photocorrosion are two crucial issues limiting the practical applications of zinc oxide(ZnO)-based photocatalysts.In this paper,we report the fabrication of graphitic-carbon-mediated ZnO nan...Low optical absorption and photocorrosion are two crucial issues limiting the practical applications of zinc oxide(ZnO)-based photocatalysts.In this paper,we report the fabrication of graphitic-carbon-mediated ZnO nanorod arrays(NRAs)with enhanced photocatalytic activity and photostability for CO2 reduction under visible light irradiation.ZnO NRA/C-x(x=005,01,02,and 03)nanohybrids are prepared by calcining pre-synthesized ZnO NRAs with different amounts of glucose(0.05,0.1,0.2,and 0.3 g)as a carbon source via a hydrothermal method.X-ray photoelectron spectroscopy reveals that the obtained ZnO NRA/C-x nanohybrids are imparted with the effects of both carbon doping and carbon coating,as evidenced by the detected C-O-Zn bond and the C-C,C-O and C=O bonds,respectively.While the basic structure of ZnO remains unchanged,the UV-Vis absorption spectra show increased absorbance owing to the carbon doping effect in the ZnO NRA/C-x nanohybrids.The photoluminescence(PL)intensities of ZnO NRA/C-x nanohybrids are lower than that of bare ZnO NRA,indicating that the graphitic carbon layer coated on the surface of the ZnO NRA significantly enhances the charge carrier separation and transport,which in turn enhances the photoelectrochemical property and photocatalytic activity of the ZnO NRA/C-x nanohybrids for CO2 reduction.More importantly,a long-term reaction of photocatalytic CO2 reduction demonstrates that the photostability of ZnO NRA/C-x nanohybrids is significantly increased in comparison with the bare ZnO NRA.展开更多
The present work establishes a systematic approach based on the application of in-situ Fourier transform infrared spectroscopy (FTIR) for the investigation of the crystal structure, thermal stability, redox behavior...The present work establishes a systematic approach based on the application of in-situ Fourier transform infrared spectroscopy (FTIR) for the investigation of the crystal structure, thermal stability, redox behavior (temperature-programmed reduction/temperatureprogrammed re-oxidation) as well as the catalytic properties of Co3O4 thin films. The syntheses of Co3O4 were achieved by chemical vapor deposition in the temperature range of 400-500℃. The structure analysis of the as-prepared material revealed the presence of two prominent IR bands peaking at 544 cm-1 (υ1) and 650 cm-1 (υ2) respectively, which originate from the stretching vibrations of the Co-O bond, characteristic of the Co3O4 spinel. The lattice stability limit of Co3O4 was estimated to be above 650℃. The redox properties of the spinel structure were determined by integrating the area under the emission bands υ1 and υ2 as a function of the temperature. Moreover, Co3O4 has been successfully tested as a catalyst towards complete oxidation of dimethyl ether below 340 ℃. The exhaust gas analysis during the catalytic process by in situ absorption FTIR revealed that only CO2 and H2O were detected as the final products in the catalytic reaction. The redox behavior suggests that the oxidation of dimethyl ether over Co3O4 follows a Mars-van Krevelen type mechanism. The comprehensive application of in situ FTIR provides a novel diagnostic tool in characterization and performance test of catalysts.展开更多
The high-temperature(HT) and low-temperature(LT) hydrothermal stabilities of molecular-sieve-based catalysts are important for the selective catalytic reduction of NOx with ammonia(NH3-SCR). In this paper, we report a...The high-temperature(HT) and low-temperature(LT) hydrothermal stabilities of molecular-sieve-based catalysts are important for the selective catalytic reduction of NOx with ammonia(NH3-SCR). In this paper, we report a catalyst, Cu2+ loading SAPO-17, synthesized using cyclohexylamine(CHA), which is commercially available and inexpensive and is utilized in NH3-SCR reduction for the first time. After systematic investigations on the optimization of Si and Cu2+ contents, it was concluded that Cu-SAPO-17-8.0%-0.22 displays favorable catalytic performance, even after being heated at 353 K for 24 h and at 973 K for 16 h. Moreover, the locations of CHAs, host–guest interaction and the Bronsted acid sites were explored by Rietveld refinement against powder X-ray diffraction data of as-made SAPO-17-8.0%. The refinement results showed that two CHAs exist within one eri cage and that the protonated CHA forms a hydrogen bond with O4, which indicates that the proton bonding with O4 will form the Bronsted acid site after the calcination.展开更多
The V2O3-C dual-layer coated LiFePO4 cathode materials with excellent rate capability and cycling stability were prepared by carbothermic reduction of V2O5. X-ray powder diffraction, elemental analyzer, high resolutio...The V2O3-C dual-layer coated LiFePO4 cathode materials with excellent rate capability and cycling stability were prepared by carbothermic reduction of V2O5. X-ray powder diffraction, elemental analyzer, high resolution transmission electron microscopy and Raman spectra revealed that the V2O3 phase co-existed with carbon in the coating layer of LiFePO4 particles and the carbon content reduced without graphitization degree changing after the carbothermic reduction of V205. The electrochemical measurement results indicated that small amounts of V203 improved rate capability and cycling stability at elevated temperature of LiFePO4/C cathode materials. The V203-C dual-layer coated LiFePO4 composite with lwt% vanadium oxide delivered an initial specific capacity of 167 mAh/g at 0.2 C and 129 mAh/g at 5 C as well as excellent cycling stability. Even at elevated temperature of 55 ℃, the specific capacity of 151 mAh/g was achieved at 1 C without capacity fading after 100 cycles.展开更多
Tocopherol is the most active vitamin and natural antioxidant existing in the nature known as vitamin E. Lacking of this vitamin makes drastic exchanges on the health of the living organisms. Their active chemical for...Tocopherol is the most active vitamin and natural antioxidant existing in the nature known as vitamin E. Lacking of this vitamin makes drastic exchanges on the health of the living organisms. Their active chemical form is l-α-tocopherol substance. In this article, α-thiotocopherol a tocopherol derivative was synthesized via a precursor like dl-α-tocopherol, which has better antioxidant than natural α-tocopherol. And the last compound after separation and purification via TLC and PC procedures was analyzed by FTIR, GC-MS and elemental analysis, oxidative stability is tested with TGA method in air showing roughly antioxidant effect. Another approach is measurment of redox potential against a reference electrode under inert nitrogen atmosphere.展开更多
The construction of transition metal-based catalysts with high activity and stability has been widely regarded as a promising method to replace the precious metal Pt for oxygen reduction reaction(ORR).Herein,we synthe...The construction of transition metal-based catalysts with high activity and stability has been widely regarded as a promising method to replace the precious metal Pt for oxygen reduction reaction(ORR).Herein,we synthesized CoFe alloy nanoparticle-embedded N-doped graphitic carbon(CoFe/NC)nanostructures as ORR electrocatalysts.The ZIF-67(zeolitic imidazolate framework,ZIF)nanocubes were first synthesized,followed by an introduction of Fe2+ions to form CoFe-ZIF precursors via a simple ion-exchange route.Subsequently,the CoFe/NC composites were synthesized through a facile pyrolysis strategy.The ORR activity and the contents of cobalt and iron could be effectively adjusted by controlling the solution concentration of Fe2+ions used for the ion exchange and the pyrolysis temperature.The CoFe/NC-0.2-900 composite(synthesized with 0.2 mmol of FeSO4·7H2O at a pyrolysis temperature of 900℃)exhibited ORR activity that was superior to the other samples owing to a synergistic effect of the bimetal,especially considering the extremely high limiting current density of 6.4 mA cm^-2 compared with that of Pt/C(5.1 mA cm^-2).Rechargeable Zn-air batteries were assembled employing CoFe/NC-0.2-900 and NiFeP/NF(NiFeP supported on nickel foam(NF))as the catalysts for the discharging and charging processes,respectively,The above materials achieved reduced discharging and charging platforms,high power density,and prolonged cycling stability compared with conventional Pt/C+RuO2/C catalysts.展开更多
基金supported by the National Natural Science Foundation of China(21373037,21577013)China Postdoctoral Science Foundation(2014M560201)the Fundamental Research Funds for the Central Universities(DUT15TD49,DUT16ZD224)~~
文摘Gold stabilized on reducible oxide (CeO2 and FeOx) and irreducible oxide (γ‐Al2O3, SiO2, and HZSM‐5) were prepared by deposition precipitation method and tested for catalytic oxidation of formaldehyde (HCHO) at room temperature under high GHSV of 600000 ml/(g·s). Au/γ‐Al2O3 cata‐lyst showed distinctive catalytic performance, presenting the highest initial HCHO conversion and stability. Correlating the reaction rate with Au particle size, there is a linear relationship, suggesting that the smaller Au particle size with higher dispersion possesses high reactivity for HCHO oxida‐tion. All the catalysts deactivated at high GHSV (600000 ml/(g·s)), but in a quite different rate. Re‐ducible oxide (CeO2 and FeOx) could stabilize gold through O linkage and therefore exhibits a better stability for HCHO oxidation reaction. However, the aggregation of gold particles occurred over Au/SiO2 and Au/HZSM‐5 catalysts, which result in the fast deactivation. Therefore, our results sug‐gest that the reducibility of the supports for Au catalysis has no direct influence on the activity, but affects the catalytic stability.
基金supported by the National Natural Science Foundation of China(21476104)the Natural Science Foundation for Distinguished Young Scholars of Jiangsu Province(BK20150009)+4 种基金the Natural Science Foundation for Young Scholars of Jiangsu Province(BK20150396)the Soft Science Research Program of Jiangsu Province(BR2015009)the Nanotechnology Program of Suzhou(ZXG2013029)the Priority Academic Program Development(PAPD)of Jiangsu Higher Education Institutions,Qing Lan Project of Jiangsu Provincethe Fundamental Research Funds for the Central Universities,China
文摘Nitrogen-doped carbon materials exhibiting high oxygen reduction reaction activity were prepared via the pyrolysis of a poly-p-phenylenediamine/carbon black composite. The as-synthesized cata- lyst showed excellent catalytic activity in alkaline solution, and outperformed commercial Pt/C in KOH solution (0.1 mol/L), as demonstrated by the higher current density and the more positive half-wave potential. Scanning electron microscopy and N2 adsorption-desorption analyses indicated that a composite structure, in which the N-rich surface of the poly-p-phenylenediamine had an in- creased active center concentration and the high external surface area of the carbon black was conducive to the mass transport, is highly beneficial in terms of promoting the oxygen reduction reaction. However, the activity of this catalyst underwent an obvious decrease following exposure to air for 30 d. X-ray photoelectron spectroscopy showed that the oxygen content in the catalyst was increased by prolonged air exposure. O ls spectrum showed increases in the C:O and C-O compo- nents, suggesting that atmospheric oxygen reacted with the catalyst. This oxidation leaded to the deactivation of active center, thus the catalytic activity decreased. Based on these results, the stabil- ity in air of nitrogen-doped carbon materials must be taken into consideration when assessing ap- plications as alternatives to platinum-based materials.
文摘Low optical absorption and photocorrosion are two crucial issues limiting the practical applications of zinc oxide(ZnO)-based photocatalysts.In this paper,we report the fabrication of graphitic-carbon-mediated ZnO nanorod arrays(NRAs)with enhanced photocatalytic activity and photostability for CO2 reduction under visible light irradiation.ZnO NRA/C-x(x=005,01,02,and 03)nanohybrids are prepared by calcining pre-synthesized ZnO NRAs with different amounts of glucose(0.05,0.1,0.2,and 0.3 g)as a carbon source via a hydrothermal method.X-ray photoelectron spectroscopy reveals that the obtained ZnO NRA/C-x nanohybrids are imparted with the effects of both carbon doping and carbon coating,as evidenced by the detected C-O-Zn bond and the C-C,C-O and C=O bonds,respectively.While the basic structure of ZnO remains unchanged,the UV-Vis absorption spectra show increased absorbance owing to the carbon doping effect in the ZnO NRA/C-x nanohybrids.The photoluminescence(PL)intensities of ZnO NRA/C-x nanohybrids are lower than that of bare ZnO NRA,indicating that the graphitic carbon layer coated on the surface of the ZnO NRA significantly enhances the charge carrier separation and transport,which in turn enhances the photoelectrochemical property and photocatalytic activity of the ZnO NRA/C-x nanohybrids for CO2 reduction.More importantly,a long-term reaction of photocatalytic CO2 reduction demonstrates that the photostability of ZnO NRA/C-x nanohybrids is significantly increased in comparison with the bare ZnO NRA.
文摘The present work establishes a systematic approach based on the application of in-situ Fourier transform infrared spectroscopy (FTIR) for the investigation of the crystal structure, thermal stability, redox behavior (temperature-programmed reduction/temperatureprogrammed re-oxidation) as well as the catalytic properties of Co3O4 thin films. The syntheses of Co3O4 were achieved by chemical vapor deposition in the temperature range of 400-500℃. The structure analysis of the as-prepared material revealed the presence of two prominent IR bands peaking at 544 cm-1 (υ1) and 650 cm-1 (υ2) respectively, which originate from the stretching vibrations of the Co-O bond, characteristic of the Co3O4 spinel. The lattice stability limit of Co3O4 was estimated to be above 650℃. The redox properties of the spinel structure were determined by integrating the area under the emission bands υ1 and υ2 as a function of the temperature. Moreover, Co3O4 has been successfully tested as a catalyst towards complete oxidation of dimethyl ether below 340 ℃. The exhaust gas analysis during the catalytic process by in situ absorption FTIR revealed that only CO2 and H2O were detected as the final products in the catalytic reaction. The redox behavior suggests that the oxidation of dimethyl ether over Co3O4 follows a Mars-van Krevelen type mechanism. The comprehensive application of in situ FTIR provides a novel diagnostic tool in characterization and performance test of catalysts.
文摘The high-temperature(HT) and low-temperature(LT) hydrothermal stabilities of molecular-sieve-based catalysts are important for the selective catalytic reduction of NOx with ammonia(NH3-SCR). In this paper, we report a catalyst, Cu2+ loading SAPO-17, synthesized using cyclohexylamine(CHA), which is commercially available and inexpensive and is utilized in NH3-SCR reduction for the first time. After systematic investigations on the optimization of Si and Cu2+ contents, it was concluded that Cu-SAPO-17-8.0%-0.22 displays favorable catalytic performance, even after being heated at 353 K for 24 h and at 973 K for 16 h. Moreover, the locations of CHAs, host–guest interaction and the Bronsted acid sites were explored by Rietveld refinement against powder X-ray diffraction data of as-made SAPO-17-8.0%. The refinement results showed that two CHAs exist within one eri cage and that the protonated CHA forms a hydrogen bond with O4, which indicates that the proton bonding with O4 will form the Bronsted acid site after the calcination.
基金This work was supported by the National Natural Science Foundation of China (No.21006033 and No.51372060) and the Fundamental Research fUnds for the Central Universities (No.2013HGCH0002).
文摘The V2O3-C dual-layer coated LiFePO4 cathode materials with excellent rate capability and cycling stability were prepared by carbothermic reduction of V2O5. X-ray powder diffraction, elemental analyzer, high resolution transmission electron microscopy and Raman spectra revealed that the V2O3 phase co-existed with carbon in the coating layer of LiFePO4 particles and the carbon content reduced without graphitization degree changing after the carbothermic reduction of V205. The electrochemical measurement results indicated that small amounts of V203 improved rate capability and cycling stability at elevated temperature of LiFePO4/C cathode materials. The V203-C dual-layer coated LiFePO4 composite with lwt% vanadium oxide delivered an initial specific capacity of 167 mAh/g at 0.2 C and 129 mAh/g at 5 C as well as excellent cycling stability. Even at elevated temperature of 55 ℃, the specific capacity of 151 mAh/g was achieved at 1 C without capacity fading after 100 cycles.
文摘Tocopherol is the most active vitamin and natural antioxidant existing in the nature known as vitamin E. Lacking of this vitamin makes drastic exchanges on the health of the living organisms. Their active chemical form is l-α-tocopherol substance. In this article, α-thiotocopherol a tocopherol derivative was synthesized via a precursor like dl-α-tocopherol, which has better antioxidant than natural α-tocopherol. And the last compound after separation and purification via TLC and PC procedures was analyzed by FTIR, GC-MS and elemental analysis, oxidative stability is tested with TGA method in air showing roughly antioxidant effect. Another approach is measurment of redox potential against a reference electrode under inert nitrogen atmosphere.
基金the support of the National Natural Science Foundation of China (21771059, 21631004 and 21571054)the Natural Science Foundation of Heilongjiang Province (JJ2019YX0122)+1 种基金Heilongjiang Provincial Postdoctoral Science Foundation (LBH-Q16194)the excellent Youth Foundation of Heilongjiang University (JC201706)
文摘The construction of transition metal-based catalysts with high activity and stability has been widely regarded as a promising method to replace the precious metal Pt for oxygen reduction reaction(ORR).Herein,we synthesized CoFe alloy nanoparticle-embedded N-doped graphitic carbon(CoFe/NC)nanostructures as ORR electrocatalysts.The ZIF-67(zeolitic imidazolate framework,ZIF)nanocubes were first synthesized,followed by an introduction of Fe2+ions to form CoFe-ZIF precursors via a simple ion-exchange route.Subsequently,the CoFe/NC composites were synthesized through a facile pyrolysis strategy.The ORR activity and the contents of cobalt and iron could be effectively adjusted by controlling the solution concentration of Fe2+ions used for the ion exchange and the pyrolysis temperature.The CoFe/NC-0.2-900 composite(synthesized with 0.2 mmol of FeSO4·7H2O at a pyrolysis temperature of 900℃)exhibited ORR activity that was superior to the other samples owing to a synergistic effect of the bimetal,especially considering the extremely high limiting current density of 6.4 mA cm^-2 compared with that of Pt/C(5.1 mA cm^-2).Rechargeable Zn-air batteries were assembled employing CoFe/NC-0.2-900 and NiFeP/NF(NiFeP supported on nickel foam(NF))as the catalysts for the discharging and charging processes,respectively,The above materials achieved reduced discharging and charging platforms,high power density,and prolonged cycling stability compared with conventional Pt/C+RuO2/C catalysts.