Carbon dioxide is a cheap, abundant and renewable C1 building block. Over the last two decades, considerable re- search efforts have been devoted to developing new reactions for the efficient incorporation of carbon d...Carbon dioxide is a cheap, abundant and renewable C1 building block. Over the last two decades, considerable re- search efforts have been devoted to developing new reactions for the efficient incorporation of carbon dioxide into a broad range of compounds for the production of value-added materi- als [1]. Notably, these efforts have culminated in the develop- ment of several transition-metal-catalyzed methods capable of providing access to numerous synthetically important carbox- ylic acids and derivatives using carbon dioxide as a carboxyla- tive reagent [2].展开更多
The electrocarboxylation reaction is an attractive means to convert CO_(2) into valuable chemicals under ambient conditions,while it still suffers from low efficiency due to the high stability of CO_(2).In this work,w...The electrocarboxylation reaction is an attractive means to convert CO_(2) into valuable chemicals under ambient conditions,while it still suffers from low efficiency due to the high stability of CO_(2).In this work,we report a double activation strategy for simultaneously activating CO_(2) and acetophenone by silver-doped CeO_(2)(Ag-CeO_(2)) nanowires,featuring as an effective electrocatalyst for electrocarboxylation of acetophenone with CO_(2).Compared to the Ag foil,Ag nanoparticles and CeO_(2) nanowires,the Ag-CeO_(2)nanowire catalyst allowed to reduce the onset potential difference between CO_(2) and acetophenone activation,thus enabling efficient electrocarboxylation to form 2-phenyllactic acid.The Faradaic efficiency for producing 2-phenyllactic acid reached 91%at−1.8 V versus Ag/AgI.This double activation strategy of activating both CO_(2)and organic substrate molecules can benefit the catalyst design to improve activities and selectivities in upgrading CO_(2)fixation for higher-value electrocarboxylation.展开更多
Recent advances in large area graphene growth have led to many applications in different areas. In the present study, chemical vapor deposited (CVD) monolayer graphene supported on glass substrate electrochemical bi...Recent advances in large area graphene growth have led to many applications in different areas. In the present study, chemical vapor deposited (CVD) monolayer graphene supported on glass substrate electrochemical biosensing applications was examined as electrode material for We report a facile strategy for covalent functionalization of CVD monolayer graphene by electrochemical reduction of carboxyphenyl diazonium salt prepared in situ in acidic aqueous solution. The carboxyphenyl-modified graphene is characterized using Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and atomic force microscopy (AFM), as well as electrochemical impedance spectroscopy (hIS). We also show that the number of grafted carboxyphenyl groups on the graphene surface can be controlled by the number of cyclic voltammetry (CV) scans used for electrografting. We further present the fabrication and characterization of an immunosensor based on immobilization of ovalbumin antibody on the graphene surface after the activation of the grafted carboxylic groups via EDC/NHS chemistry. The binding between the surface-immobilized antibodies and ovalbumin was then monitored using Faradaic EIS in [Fe(CN)6]^3-/4- solution. The percentage change of charge transfer resistance (Rct) after binding exhibited a linear dependence for ovalbumin concentrations ranging from 1.0 pg·mL^-1 to 100 ng·mL^-1, with a detection limit of 0.9 pg·mL^-1. Our results indicate good sensitivity of the developed functionalized CVD graphene platform, paving the way for using CVD monolayer graphene in a variety of electrochemical biosensing devices.展开更多
The electrochemical behavior of nanodiamond (ND) film functionalized with carboxylic acid groups was studied systemati- cally on a glassy carbon (GC) electrode. One stable redox couple corresponding to the carboxy...The electrochemical behavior of nanodiamond (ND) film functionalized with carboxylic acid groups was studied systemati- cally on a glassy carbon (GC) electrode. One stable redox couple corresponding to the carboxylic acid group was observed. At the scan rate of 0.1 V/s, the cathodic and anodic peak potentials were -0.093 V and 0.088 V (vs. Ag/AgCI), respectively. The carboxylic acid groups on the ND surface were reduced to CH2OH via a four electron redox process. The ND film modified electrode showed favorable electrocatalytic behavior toward the oxidation as well as the reduction of biomolecules, such as tryptophan and nicotinamide adenine dinucleotide.展开更多
文摘Carbon dioxide is a cheap, abundant and renewable C1 building block. Over the last two decades, considerable re- search efforts have been devoted to developing new reactions for the efficient incorporation of carbon dioxide into a broad range of compounds for the production of value-added materi- als [1]. Notably, these efforts have culminated in the develop- ment of several transition-metal-catalyzed methods capable of providing access to numerous synthetically important carbox- ylic acids and derivatives using carbon dioxide as a carboxyla- tive reagent [2].
文摘The electrocarboxylation reaction is an attractive means to convert CO_(2) into valuable chemicals under ambient conditions,while it still suffers from low efficiency due to the high stability of CO_(2).In this work,we report a double activation strategy for simultaneously activating CO_(2) and acetophenone by silver-doped CeO_(2)(Ag-CeO_(2)) nanowires,featuring as an effective electrocatalyst for electrocarboxylation of acetophenone with CO_(2).Compared to the Ag foil,Ag nanoparticles and CeO_(2) nanowires,the Ag-CeO_(2)nanowire catalyst allowed to reduce the onset potential difference between CO_(2) and acetophenone activation,thus enabling efficient electrocarboxylation to form 2-phenyllactic acid.The Faradaic efficiency for producing 2-phenyllactic acid reached 91%at−1.8 V versus Ag/AgI.This double activation strategy of activating both CO_(2)and organic substrate molecules can benefit the catalyst design to improve activities and selectivities in upgrading CO_(2)fixation for higher-value electrocarboxylation.
文摘Recent advances in large area graphene growth have led to many applications in different areas. In the present study, chemical vapor deposited (CVD) monolayer graphene supported on glass substrate electrochemical biosensing applications was examined as electrode material for We report a facile strategy for covalent functionalization of CVD monolayer graphene by electrochemical reduction of carboxyphenyl diazonium salt prepared in situ in acidic aqueous solution. The carboxyphenyl-modified graphene is characterized using Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and atomic force microscopy (AFM), as well as electrochemical impedance spectroscopy (hIS). We also show that the number of grafted carboxyphenyl groups on the graphene surface can be controlled by the number of cyclic voltammetry (CV) scans used for electrografting. We further present the fabrication and characterization of an immunosensor based on immobilization of ovalbumin antibody on the graphene surface after the activation of the grafted carboxylic groups via EDC/NHS chemistry. The binding between the surface-immobilized antibodies and ovalbumin was then monitored using Faradaic EIS in [Fe(CN)6]^3-/4- solution. The percentage change of charge transfer resistance (Rct) after binding exhibited a linear dependence for ovalbumin concentrations ranging from 1.0 pg·mL^-1 to 100 ng·mL^-1, with a detection limit of 0.9 pg·mL^-1. Our results indicate good sensitivity of the developed functionalized CVD graphene platform, paving the way for using CVD monolayer graphene in a variety of electrochemical biosensing devices.
基金sponsored by the National Natural Science Foundation of China (21075136)
文摘The electrochemical behavior of nanodiamond (ND) film functionalized with carboxylic acid groups was studied systemati- cally on a glassy carbon (GC) electrode. One stable redox couple corresponding to the carboxylic acid group was observed. At the scan rate of 0.1 V/s, the cathodic and anodic peak potentials were -0.093 V and 0.088 V (vs. Ag/AgCI), respectively. The carboxylic acid groups on the ND surface were reduced to CH2OH via a four electron redox process. The ND film modified electrode showed favorable electrocatalytic behavior toward the oxidation as well as the reduction of biomolecules, such as tryptophan and nicotinamide adenine dinucleotide.