In this study,direct reduction-magnetic separation process was applied to enrich phosphorus and iron to prepare Fe-P crude alloy from a high phosphorus oolitic hematite ore(HPOH).The results show that at lower tempera...In this study,direct reduction-magnetic separation process was applied to enrich phosphorus and iron to prepare Fe-P crude alloy from a high phosphorus oolitic hematite ore(HPOH).The results show that at lower temperatures and with absence of any of additives,Fe cannot be effectively recovered because of the oolitic structure is not destroyed.In contrast,under the conditions of 15%Na_(2)SO_(4)and reducing at 1050℃ for 120 min with a total C/Fe ratio(molar ratio)of 8.5,a final Fe-P alloy containing 92.40%Fe and 1.09%P can be obtained at an overall iron recovery of 95.43%and phosphorus recovery of 68.98%,respectively.This metallized Fe-P powder can be applied as the burden for production of weathering resistant steels.The developed process can provide an alternative for effective and green utilization of high phosphorus iron ore.展开更多
The electronic structure of catalytic active sites can be influenced by modulating the coordination bonding of the central single metal atom,but it is difficult to achieve.Herein,we reported the single Zn-atom incorpo...The electronic structure of catalytic active sites can be influenced by modulating the coordination bonding of the central single metal atom,but it is difficult to achieve.Herein,we reported the single Zn-atom incorporated dual doped P,N carbon framework(Zn-N_(4)P/C)for ORR via engineering the surrounding coordination environment of active centers.The Zn-N_(4)P/C catalyst exhibited comparable ORR activity(E_(1/2)=0.86 V)and significantly better ORR stability than that of Pt/C catalyst.It also shows respectable performance in terms of maximum peak power density(249.6 mW cm^(-2)),specific capacitance(779 mAh g^(-1)),and charge-discharge cycling stability for 150 hours in Zn-air battery.The high catalytic activity is attributed to the uniform active sites,tunable electronic/geometric configuration,optimized intrinsic activity,and faster mass transfer during ORR-pathway.Further,theoretical results exposed that the Zn-N_(4)P configuration is more electrochemically active as compared to Zn-N_(4) structure for the oxygen reduction reaction.展开更多
基金Projects(AA18242003,AA148242003)supported by Innovation-driven Project of Guangxi Zhuang Autonomous Region,ChinaProject(51474161)supported by the National Natural Science Foundation of China。
文摘In this study,direct reduction-magnetic separation process was applied to enrich phosphorus and iron to prepare Fe-P crude alloy from a high phosphorus oolitic hematite ore(HPOH).The results show that at lower temperatures and with absence of any of additives,Fe cannot be effectively recovered because of the oolitic structure is not destroyed.In contrast,under the conditions of 15%Na_(2)SO_(4)and reducing at 1050℃ for 120 min with a total C/Fe ratio(molar ratio)of 8.5,a final Fe-P alloy containing 92.40%Fe and 1.09%P can be obtained at an overall iron recovery of 95.43%and phosphorus recovery of 68.98%,respectively.This metallized Fe-P powder can be applied as the burden for production of weathering resistant steels.The developed process can provide an alternative for effective and green utilization of high phosphorus iron ore.
文摘The electronic structure of catalytic active sites can be influenced by modulating the coordination bonding of the central single metal atom,but it is difficult to achieve.Herein,we reported the single Zn-atom incorporated dual doped P,N carbon framework(Zn-N_(4)P/C)for ORR via engineering the surrounding coordination environment of active centers.The Zn-N_(4)P/C catalyst exhibited comparable ORR activity(E_(1/2)=0.86 V)and significantly better ORR stability than that of Pt/C catalyst.It also shows respectable performance in terms of maximum peak power density(249.6 mW cm^(-2)),specific capacitance(779 mAh g^(-1)),and charge-discharge cycling stability for 150 hours in Zn-air battery.The high catalytic activity is attributed to the uniform active sites,tunable electronic/geometric configuration,optimized intrinsic activity,and faster mass transfer during ORR-pathway.Further,theoretical results exposed that the Zn-N_(4)P configuration is more electrochemically active as compared to Zn-N_(4) structure for the oxygen reduction reaction.