期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
进化动机影响社会认知的一般特点及过程 被引量:7
1
作者 李宏利 王燕 《心理科学进展》 CSSCI CSCD 北大核心 2011年第10期1544-1551,共8页
进化动机影响社会认知的研究关注社会认知的起源、机能及影响。进化动机影响社会认知的一般特点有(1)特殊性,如成功地解决求偶问题的机制不能用来解决身体危险有关的问题,(2)灵活性,如不同类别的环境线索自动地激活与线索类别有关的社... 进化动机影响社会认知的研究关注社会认知的起源、机能及影响。进化动机影响社会认知的一般特点有(1)特殊性,如成功地解决求偶问题的机制不能用来解决身体危险有关的问题,(2)灵活性,如不同类别的环境线索自动地激活与线索类别有关的社会信息。借用传统的社会认知研究方法,研究者发现特定的线索会启动相应的进化动机(如面孔吸引力启动人们的求偶动机),进化动机激活后就能引导人们加工有利于这种动机(或目标)实现的信息(如性别相关的风险信息等)。未来的进化动机影响社会认知的研究可以结合积极心理学(positive psychology)与具身认知(embodied cognition)的理论假设,以产生更有价值的研究成果。 展开更多
关键词 进化动机 社会认知 具身认知 积极心理学
下载PDF
线索效价、进化动机与消费升级——基于精细加工可能性模型
2
作者 王永洁 《商业经济研究》 北大核心 2021年第1期56-59,共4页
在不同的电子商务网站中,消费者需要辨析产品信息的线索效价,并通过线索效价产生的进化动机进行消费决策,如何帮助消费者提取有效线索,成为各个厂商需要考察的重要问题。基于此,本文结合线索理论、效价理论和消费升级理论,采用精细加工... 在不同的电子商务网站中,消费者需要辨析产品信息的线索效价,并通过线索效价产生的进化动机进行消费决策,如何帮助消费者提取有效线索,成为各个厂商需要考察的重要问题。基于此,本文结合线索理论、效价理论和消费升级理论,采用精细加工可能性模型(ELM)研究了多维价格条件下的线索范围与进化动机的关联。研究表明:高范围线索能够有效促进消费者的进化动机,而低范围线索与消费者进化动机不具备显著关联;对低价格产品而言,消费进化动机显著正向关联消费升级行为,但这一现象在高价格产品组别中并不存在;设定个性化、精准化的推荐系统可以缓解消费者购物压力,实现消费动机向消费升级的转换。 展开更多
关键词 线索理论 效价理论 进化动机 消费升级 精细加工
下载PDF
动机进化论:关于自然界从生命起源进化到人类的学术思考 被引量:3
3
作者 张成岗 《医学争鸣》 CAS 2021年第5期1-8,12,共9页
生命起源与进化是地球历史发展过程中的一个自然现象。即便是能够通过考古学和历史学研究等知晓人类是从动物进化而来的,然而通常也很难理解自然界进化出复杂生命现象的目的、动机和意义。虽然有"存在即合理"的说法,但如果进... 生命起源与进化是地球历史发展过程中的一个自然现象。即便是能够通过考古学和历史学研究等知晓人类是从动物进化而来的,然而通常也很难理解自然界进化出复杂生命现象的目的、动机和意义。虽然有"存在即合理"的说法,但如果进化是随机的,那么,自然界又怎么会进化出号称"万物之灵"的人类这一特殊的高级物种呢?从原始社会发展到现代社会,人类经历了数不胜数的自然灾害、疾病和战争等痛苦与磨难,其成长和发展过程实属不易。当前虽已进入21世纪,人类在物质文明与精神文明获得大发展的同时,却依然面临病毒疫情、慢病顽疾、焦虑抑郁、恐怖袭击、难民危机、战争阴云等压力,这就不得不令人深思,人类的出现与发展是否必须面对这些痛苦。在此前提出"菌心进化论"的基础上,进一步从"动机进化论"的角度进行学术探讨,旨在为人类存在与发展的意义和价值提供一种新解释,有利于对人类社会未来健康美好的生活图景进行科学展望。 展开更多
关键词 生命起源与进化 动机进化 菌心进化 菌心说 双脑论
下载PDF
Numerical investigation on permeability evolution behavior of rock by an improved flow-coupling algorithm in particle flow code 被引量:9
4
作者 ZENG Wei YANG Sheng-qi +1 位作者 TIAN Wen-ling WEN Kai 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第6期1367-1385,共19页
Permeability is a vital property of rock mass, which is highly affected by tectonic stress and human engineering activities. A comprehensive monitoring of pore pressure and flow rate distributions inside the rock mass... Permeability is a vital property of rock mass, which is highly affected by tectonic stress and human engineering activities. A comprehensive monitoring of pore pressure and flow rate distributions inside the rock mass is very important to elucidate the permeability evolution mechanisms, which is difficult to realize in laboratory, but easy to be achieved in numerical simulations. Therefore, the particle flow code (PFC), a discrete element method, is used to simulate permeability behaviors of rock materials in this study. Owe to the limitation of the existed solid-fluid coupling algorithm in PFC, an improved flow-coupling algorithm is presented to better reflect the preferential flow in rock fractures. The comparative analysis is conducted between original and improved algorithm when simulating rock permeability evolution during triaxial compression, showing that the improved algorithm can better describe the experimental phenomenon. Furthermore, the evolution of pore pressure and flow rate distribution during the flow process are analyzed by using the improved algorithm. It is concluded that during the steady flow process in the fractured specimen, the pore pressure and flow rate both prefer transmitting through the fractures rather than rock matrix. Based on the results, fractures are divided into the following three types: I) fractures link to both the inlet and outlet, II) fractures only link to the inlet, and III) fractures only link to the outlet. The type I fracture is always the preferential propagating path for both the pore pressure and flow rate. For type II fractures, the pore pressure increases and then becomes steady. However, the flow rate increases first and begins to decrease after the flow reaches the stop end of the fracture and finally vanishes. There is no obvious pore pressure or flow rate concentration within type III fractures. 展开更多
关键词 rock mechanics fluid-solid coupling particle flow code (PFC) PERMEABILITY triaxial compression
下载PDF
Hydraulic cylinder control of injection molding machine based on differential evolution fractional order PID 被引量:2
5
作者 LI Ya-qiu GU Li-chen +1 位作者 YANG Sha XUE Xu-fei 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2020年第4期317-325,共9页
Injection molding machine,hydraulic elevator,speed actuators belong to variable speed pump control cylinder system.Because variable speed pump control cylinder system is a nonlinear hydraulic system,it has some proble... Injection molding machine,hydraulic elevator,speed actuators belong to variable speed pump control cylinder system.Because variable speed pump control cylinder system is a nonlinear hydraulic system,it has some problems such as response lag and poor steady-state accuracy.To solve these problems,for the hydraulic cylinder of injection molding machine driven by the servo motor,a fractional order proportion-integration-diferentiation(FOPID)control strategy is proposed to realize the speed tracking control.Combined with the adaptive differential evolution algorithm,FOPID control strategy is used to determine the parameters of controller on line based on the test on the servo-motor-driven gear-pump-controlled hydraulic cylinder injection molding machine.Then the slef-adaptive differential evolution fractional order PID controller(SADE-FOPID)model of variable speed pump-controlled hydraulic cylinder is established in the test system with simulated loading.The simulation results show that compared with the classical PID control,the FOPID has better steady-state accuracy and fast response when the control parameters are optimized by the adaptive differential evolution algorithm.Experimental results show that SADE-FOPID control strategy is effective and feasible,and has good anti-load disturbance performance. 展开更多
关键词 variable speed pump-controlled cylinder fractional order proportion-integration-differentiation(FOPID) self-adaptive differential evolution(SADE) injection molding machine control anti-load disturbance
下载PDF
Modeling and multi-objective optimization of a gasoline engine using neural networks and evolutionary algorithms 被引量:6
6
作者 JoséD. MARTíNEZ-MORALES Elvia R. PALACIOS-HERNáNDEZ Gerardo A. VELáZQUEZ-CARRILLO 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2013年第9期657-670,共14页
In this paper, a multi-objective particle swarm optimization (MOPSO) algorithm and a nondominated sorting genetic algorithm II (NSGA-II) are used to optimize the operating parameters of a 1.6 L, spark ignition (S... In this paper, a multi-objective particle swarm optimization (MOPSO) algorithm and a nondominated sorting genetic algorithm II (NSGA-II) are used to optimize the operating parameters of a 1.6 L, spark ignition (SI) gasoline engine. The aim of this optimization is to reduce engine emissions in terms of carbon monoxide (CO), hydrocarbons (HC), and nitrogen oxides (NOx), which are the causes of diverse environmental problems such as air pollution and global warming. Stationary engine tests were performed for data generation, covering 60 operating conditions. Artificial neural networks (ANNs) were used to predict exhaust emissions, whose inputs were from six engine operating parameters, and the outputs were three resulting exhaust emissions. The outputs of ANNs were used to evaluate objective functions within the optimization algorithms: NSGA-II and MOPSO. Then a decision-making process was conducted, using a fuzzy method to select a Pareto solution with which the best emission reductions can be achieved. The NSGA-II algorithm achieved reductions of at least 9.84%, 82.44%, and 13.78% for CO, HC, and NOx, respectively. With a MOPSO algorithm the reached reductions were at least 13.68%, 83.80%, and 7.67% for CO, HC, and NOx, respectively. 展开更多
关键词 Engine calibration Multi-objective optimization Neural networks Multiple objective particle swarm optimization(MOPSO) Nondominated sorting genetic algorithm II (NSGA-II)
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部