为提升谱聚类的聚类精度和适用性,提出了一种基于Fréchet距离的谱聚类算法(A Spectral Clustering Algorithm Based on Fréchet Distance,FSC),通过Fréchet距离构建相似度矩阵,并将重构的相似矩阵应用于谱聚类中。利用Fr...为提升谱聚类的聚类精度和适用性,提出了一种基于Fréchet距离的谱聚类算法(A Spectral Clustering Algorithm Based on Fréchet Distance,FSC),通过Fréchet距离构建相似度矩阵,并将重构的相似矩阵应用于谱聚类中。利用Fréchet距离度量数据特征维度的相似性对样本的多个特征进行分析,进而扩展典型谱聚类算法的适用性。FSC不仅适用于低维流形结构清晰的数据,也适用于高维或稀疏数据,如高光谱图像数据。在3个经典的高光谱图像上的实验结果表明,FSC算法有效提高了高光谱图像聚类的精度。展开更多
在高维多目标进化算法中,通常利用重组算子产生优质子代来引导种群搜索,已有研究表明,利用相似个体进行重组可以提高子代个体质量.由于自组织映射(Self-Organizing Mapping,SOM)网络能够通过聚类的方式保持种群个体原有的拓扑逻辑关系...在高维多目标进化算法中,通常利用重组算子产生优质子代来引导种群搜索,已有研究表明,利用相似个体进行重组可以提高子代个体质量.由于自组织映射(Self-Organizing Mapping,SOM)网络能够通过聚类的方式保持种群个体原有的拓扑逻辑关系并获得个体的相似信息,因此本文提出一种基于SOM聚类和自适应算子选择的高维多目标进化算法(Many-Objective Evolutionary Algorithm based on SOM Clustering and Adaptive Operator Selection,MaOEASCAOS).本文首先通过自组织映射网络进行种群分类,提取个体数据结构信息,并利用相似性构建邻域交配池;然后根据类内个体支配信息进行自适应算子选择,提高算法搜索和收敛性能;最后,采用环境选择策略对种群进行多样性管理以保证种群在帕累托前沿均匀分布.仿真结果表明,本文提出的基于SOM聚类和自适应算子选择(SOM Clustering and Adaptive Operator Selection,SCAOS)方法在处理高维多目标优化问题时具有较强的竞争力并且性能指标整体优于其他方法.展开更多
文摘为提升谱聚类的聚类精度和适用性,提出了一种基于Fréchet距离的谱聚类算法(A Spectral Clustering Algorithm Based on Fréchet Distance,FSC),通过Fréchet距离构建相似度矩阵,并将重构的相似矩阵应用于谱聚类中。利用Fréchet距离度量数据特征维度的相似性对样本的多个特征进行分析,进而扩展典型谱聚类算法的适用性。FSC不仅适用于低维流形结构清晰的数据,也适用于高维或稀疏数据,如高光谱图像数据。在3个经典的高光谱图像上的实验结果表明,FSC算法有效提高了高光谱图像聚类的精度。
文摘在高维多目标进化算法中,通常利用重组算子产生优质子代来引导种群搜索,已有研究表明,利用相似个体进行重组可以提高子代个体质量.由于自组织映射(Self-Organizing Mapping,SOM)网络能够通过聚类的方式保持种群个体原有的拓扑逻辑关系并获得个体的相似信息,因此本文提出一种基于SOM聚类和自适应算子选择的高维多目标进化算法(Many-Objective Evolutionary Algorithm based on SOM Clustering and Adaptive Operator Selection,MaOEASCAOS).本文首先通过自组织映射网络进行种群分类,提取个体数据结构信息,并利用相似性构建邻域交配池;然后根据类内个体支配信息进行自适应算子选择,提高算法搜索和收敛性能;最后,采用环境选择策略对种群进行多样性管理以保证种群在帕累托前沿均匀分布.仿真结果表明,本文提出的基于SOM聚类和自适应算子选择(SOM Clustering and Adaptive Operator Selection,SCAOS)方法在处理高维多目标优化问题时具有较强的竞争力并且性能指标整体优于其他方法.