In this work, by means of a new more general ansatz and the symbolic computation system Maple, we extend the Riccati equation rational expansion method [Chaos, Solitons & Fractals 25 (2005) 1019] to uniformly const...In this work, by means of a new more general ansatz and the symbolic computation system Maple, we extend the Riccati equation rational expansion method [Chaos, Solitons & Fractals 25 (2005) 1019] to uniformly construct a series of stochastic nontravelling wave solutions for nonlinear stochastic evolution equation. To illustrate the effectiveness of our method, we take the stochastic mKdV equation as an example, and successfully construct some new and more general solutions including a series of rational formal nontraveling wave and coefficient functions' soliton-like solution.s and trigonometric-like function solutions. The method can also be applied to solve other nonlinear stochastic evolution equation or equations.展开更多
The degradation of p-nitrotoluene by O3/H2O2 process in a bubble contact column was investigated. Effects of the molar ratio of hydrogen peroxide to ozone,pH value and t-butanol on the oxidation process were discussed...The degradation of p-nitrotoluene by O3/H2O2 process in a bubble contact column was investigated. Effects of the molar ratio of hydrogen peroxide to ozone,pH value and t-butanol on the oxidation process were discussed. It was found that the proper H2O2/O3 molar ratio for the degradation of p-nitrotoluene was around 0.6, different pH values and the presence of t-butanol highly influenced the removal efficiency of p-nitrotoluene. 5-methyl-2-nitrophenol, 2-methyl-5-nitrophenol, (4-nitrophenyl) methanol, 5-(hydroxymethyl)-2-nitro phenol, acetic acid, 2-methylpropane diacid and 2-(hydroxylmethyl)propane diacid were identified as degradation intermediates and products through GC-MS. Radical reaction mechanism and degradation pathway were proposed based on the results of experiments. It is deduced that the benzene ring of p-nitrotoluene can be only destroyed by hydroxyl radicals through a polyhydroxy intermediate pathway. Then unstable polyhydroxy intermediates can be oxidized to different acids with low molecular weight rapidly.展开更多
Granitic continental crust distinguishes the Earth from other planets in the Solar System. Consequently, for understanding terrestrial continent development, it is of great significance to investigate the formation an...Granitic continental crust distinguishes the Earth from other planets in the Solar System. Consequently, for understanding terrestrial continent development, it is of great significance to investigate the formation and evolution of granite.Crystal fractionation is one of principal magma evolution mechanisms. Nevertheless, it is controversial whether crystal fractionation can effectively proceed in felsic magma systems because of the high viscosity and non-Newtonian behavior associated with granitic magmas. In this paper, we focus on the physical processes and evaluate the role of crystal fractionation in the evolution of granitic magmas during non-transport processes, i.e., in magma chambers and after emplacement. Based on physical calculations and analyses, we suggest that general mineral particles can settle only at tiny speed(~10^(-9)–10^(-7) m s^(-1))in a granitic magma body due to high viscosity of the magma; however, the cumulating can be interrupted with convection in magma chambers, and the components of magma chambers will tend to be homogeneous. Magma convection ceases once the magma chamber develops into a mush(crystallinity, F>~40–50%). The interstitial melts can be extracted by hindered settling and compaction, accumulating gradually and forming a highly silicic melt layer. The high silica melts can further evolve into high-silica granite or high-silica rhyolite. At various crystallinities, multiple rejuvenation of the mush and the following magma intrusion may generate a granite complex with various components. While one special type of granites, represented by the South China lithium-and fluoride-rich granite, has lower viscosity and solidus relative to general granitic magmas, and may form vertical zonation in mineral-assemblage and composition through crystal fractionation. Similar fabrics in general intrusions that show various components on small lengthscales are not the result of gravitational settling. Rather, the flowage differentiation may play a key role. In general, granitic magma can undergo effective crystal fractionation; high-silica granite and volcanics with highly fractionated characteristics may be the products of crystal fractionation of felsic magmas, and many granitoids may be cumulates.展开更多
Batesian mimics are harmless prey species that resemble dangerous ones (models), and thus receive protection from predators. How such adaptive resemblances evolve is a classical problem in evolutionary biology. Mimi...Batesian mimics are harmless prey species that resemble dangerous ones (models), and thus receive protection from predators. How such adaptive resemblances evolve is a classical problem in evolutionary biology. Mimicry is typically thought to be difficult to evolve, especially if the model and mimic produce the convergent phenotype through different proximate mecha- nisms. However, mimicry may evolve more readily if mimic and model share similar pathways for producing the convergent phenotype. In such cases, these pathways can be co-opted in ancestral mimic populations to produce high-fidelity mimicry with- out the need for major evolutionary innovations. Here, we show that a Batesian mimic, the scarlet kingsnake Larnpropeltis elap-soides, produces its coloration using the same physiological mechanisms as does its model, the eastern coral snake Micrurus fulvius. Therefore, precise color mimicry may have been able to evolve easily in this system. Generally, we know relatively little about the proximate mechanisms underlying mimicry .展开更多
Soil organic carbon (SOC) pool has the potential to mitigate or enhance climate change by either acting as a sink, or a source of atmospheric carbon dioxide (CO2) and also plays a fundamental role in the health an...Soil organic carbon (SOC) pool has the potential to mitigate or enhance climate change by either acting as a sink, or a source of atmospheric carbon dioxide (CO2) and also plays a fundamental role in the health and proper functioning of soils to sustain life on Earth. As such, the objective of this study was to investigate the applicability of a novel evolutionary genetic optimization-based adaptive neuro-fuzzy inference system (ANFIS-EG) in predicting and mapping the spatial patterns of SOC stocks in the Eastern Mau Forest Reserve, Kenya. Field measurements and auxiliary data reflecting the soil-forming factors were used to design an ANFIS-EG model, which was then implemented to predict and map the areal differentiation of SOC stocks in the Eastern Mau Forest Reserve. This was achieved with a reasonable level of uncertainty (i.e., root mean square error of 15.07 Mg C ha-l), hence demonstrating the applicability of the ANFIS-EG in SOC mapping studies. There is potential for improving the model performance, as indicated by the current ratio of performance to deviation (1.6). The mapping also revealed marginally higher SOC stocks in the forested ecosystems (i.e., an average of 109.78 M C ha-1) than in the aro-ecosvstems (i.e., an average of 95.9 Mg C ha-l).展开更多
基金National Natural Science Foundation of China(50702065,20673135)Chinese Academy of Sciences following the"Bairen"programResearch Program of Sciences at Universities of Inner Mongolia Autonomous Region(NJZY13141)~~
基金The author would like to thank the referees very much for their careful reading of the manuscript and many valuable suggestions.
文摘In this work, by means of a new more general ansatz and the symbolic computation system Maple, we extend the Riccati equation rational expansion method [Chaos, Solitons & Fractals 25 (2005) 1019] to uniformly construct a series of stochastic nontravelling wave solutions for nonlinear stochastic evolution equation. To illustrate the effectiveness of our method, we take the stochastic mKdV equation as an example, and successfully construct some new and more general solutions including a series of rational formal nontraveling wave and coefficient functions' soliton-like solution.s and trigonometric-like function solutions. The method can also be applied to solve other nonlinear stochastic evolution equation or equations.
基金Sponsored by the National Natural Science Foundation of China(Grant No.50378028)
文摘The degradation of p-nitrotoluene by O3/H2O2 process in a bubble contact column was investigated. Effects of the molar ratio of hydrogen peroxide to ozone,pH value and t-butanol on the oxidation process were discussed. It was found that the proper H2O2/O3 molar ratio for the degradation of p-nitrotoluene was around 0.6, different pH values and the presence of t-butanol highly influenced the removal efficiency of p-nitrotoluene. 5-methyl-2-nitrophenol, 2-methyl-5-nitrophenol, (4-nitrophenyl) methanol, 5-(hydroxymethyl)-2-nitro phenol, acetic acid, 2-methylpropane diacid and 2-(hydroxylmethyl)propane diacid were identified as degradation intermediates and products through GC-MS. Radical reaction mechanism and degradation pathway were proposed based on the results of experiments. It is deduced that the benzene ring of p-nitrotoluene can be only destroyed by hydroxyl radicals through a polyhydroxy intermediate pathway. Then unstable polyhydroxy intermediates can be oxidized to different acids with low molecular weight rapidly.
基金supported by the National Key R&D Program of China (Grant Nos. 2016YFC0600204 & 2016YFC0600408)the National Natural Science Foundation of China (Grant Nos. 41421062 & 41372005)
文摘Granitic continental crust distinguishes the Earth from other planets in the Solar System. Consequently, for understanding terrestrial continent development, it is of great significance to investigate the formation and evolution of granite.Crystal fractionation is one of principal magma evolution mechanisms. Nevertheless, it is controversial whether crystal fractionation can effectively proceed in felsic magma systems because of the high viscosity and non-Newtonian behavior associated with granitic magmas. In this paper, we focus on the physical processes and evaluate the role of crystal fractionation in the evolution of granitic magmas during non-transport processes, i.e., in magma chambers and after emplacement. Based on physical calculations and analyses, we suggest that general mineral particles can settle only at tiny speed(~10^(-9)–10^(-7) m s^(-1))in a granitic magma body due to high viscosity of the magma; however, the cumulating can be interrupted with convection in magma chambers, and the components of magma chambers will tend to be homogeneous. Magma convection ceases once the magma chamber develops into a mush(crystallinity, F>~40–50%). The interstitial melts can be extracted by hindered settling and compaction, accumulating gradually and forming a highly silicic melt layer. The high silica melts can further evolve into high-silica granite or high-silica rhyolite. At various crystallinities, multiple rejuvenation of the mush and the following magma intrusion may generate a granite complex with various components. While one special type of granites, represented by the South China lithium-and fluoride-rich granite, has lower viscosity and solidus relative to general granitic magmas, and may form vertical zonation in mineral-assemblage and composition through crystal fractionation. Similar fabrics in general intrusions that show various components on small lengthscales are not the result of gravitational settling. Rather, the flowage differentiation may play a key role. In general, granitic magma can undergo effective crystal fractionation; high-silica granite and volcanics with highly fractionated characteristics may be the products of crystal fractionation of felsic magmas, and many granitoids may be cumulates.
基金We thank Karin Pfennig, Ver6nica Rodriguez-Moncalvo, Lisa Bono, and three anonymous refe-rees for helpful comments. Antonio Serrato helped with specimen collection. Chris Willett and Erin Burch aided with spectroscopy, and Vicky Madden and Steven Ray provided TEM services. Ken Wray kindly furnished coral snake speci-mens. Animal research was conducted under UNC IACUC permit 11-108. Funding was provided by the National Science Foundation (DEB-1110385 and DEB - 1019479).
文摘Batesian mimics are harmless prey species that resemble dangerous ones (models), and thus receive protection from predators. How such adaptive resemblances evolve is a classical problem in evolutionary biology. Mimicry is typically thought to be difficult to evolve, especially if the model and mimic produce the convergent phenotype through different proximate mecha- nisms. However, mimicry may evolve more readily if mimic and model share similar pathways for producing the convergent phenotype. In such cases, these pathways can be co-opted in ancestral mimic populations to produce high-fidelity mimicry with- out the need for major evolutionary innovations. Here, we show that a Batesian mimic, the scarlet kingsnake Larnpropeltis elap-soides, produces its coloration using the same physiological mechanisms as does its model, the eastern coral snake Micrurus fulvius. Therefore, precise color mimicry may have been able to evolve easily in this system. Generally, we know relatively little about the proximate mechanisms underlying mimicry .
文摘Soil organic carbon (SOC) pool has the potential to mitigate or enhance climate change by either acting as a sink, or a source of atmospheric carbon dioxide (CO2) and also plays a fundamental role in the health and proper functioning of soils to sustain life on Earth. As such, the objective of this study was to investigate the applicability of a novel evolutionary genetic optimization-based adaptive neuro-fuzzy inference system (ANFIS-EG) in predicting and mapping the spatial patterns of SOC stocks in the Eastern Mau Forest Reserve, Kenya. Field measurements and auxiliary data reflecting the soil-forming factors were used to design an ANFIS-EG model, which was then implemented to predict and map the areal differentiation of SOC stocks in the Eastern Mau Forest Reserve. This was achieved with a reasonable level of uncertainty (i.e., root mean square error of 15.07 Mg C ha-l), hence demonstrating the applicability of the ANFIS-EG in SOC mapping studies. There is potential for improving the model performance, as indicated by the current ratio of performance to deviation (1.6). The mapping also revealed marginally higher SOC stocks in the forested ecosystems (i.e., an average of 109.78 M C ha-1) than in the aro-ecosvstems (i.e., an average of 95.9 Mg C ha-l).