在电力系统中,针对用于解决多种燃料方案经济调度(economic dispatch,ED)算法收敛精度低的问题,提出了基于动态反向学习的协方差矩阵自适应进化策略(covariance matrix adaptation evolutionary strategy with dynamic opposition learn...在电力系统中,针对用于解决多种燃料方案经济调度(economic dispatch,ED)算法收敛精度低的问题,提出了基于动态反向学习的协方差矩阵自适应进化策略(covariance matrix adaptation evolutionary strategy with dynamic opposition learning,CMA-DOL),旨在根据样本点的变化动态更新反向样本点的范围,提高样本多样性,防止陷入局部最优.本方法在分别由10、40、80个发电机组组成的3个测试系统上进行了验证,并与文献中的其他算法进行比较,对超过50次独立运行的结果进行统计度量,实验结果表明CMA-DOL可以获得更好的解决方案.展开更多
现代战争中,跨平台武器单元的协同利用,是合同编队体系的重要内容,作战方式也正由平台级协同向着能力要素级协同转变,这对武器目标分配问题的解决提出了更大挑战。本文将武器单元的最小划分单位细化到能力要素级,以毁伤概率与成本消耗...现代战争中,跨平台武器单元的协同利用,是合同编队体系的重要内容,作战方式也正由平台级协同向着能力要素级协同转变,这对武器目标分配问题的解决提出了更大挑战。本文将武器单元的最小划分单位细化到能力要素级,以毁伤概率与成本消耗为优化目标,面向多种来袭目标的编队防空场景,提出了跨平台武器目标分配算法。同时,基于混沌映射提出了混沌种群重构(chaotic population reconstruction,CPR)机制,并结合带存档的自适应差分进化(adaptive differential evolution with optional external archive,JADE)算法提出了CPR-JADE算法,利用CPR机制可以帮助算法在解决高维复杂约束问题时跳出局部最优。再将其运用到武器目标分配模型上,实现了对模型的高效求解。最后,通过在多种数据规模下与其他进化优化算法的仿真对比试验分析,验证了所提方法的正确性与有效性。展开更多
文摘在电力系统中,针对用于解决多种燃料方案经济调度(economic dispatch,ED)算法收敛精度低的问题,提出了基于动态反向学习的协方差矩阵自适应进化策略(covariance matrix adaptation evolutionary strategy with dynamic opposition learning,CMA-DOL),旨在根据样本点的变化动态更新反向样本点的范围,提高样本多样性,防止陷入局部最优.本方法在分别由10、40、80个发电机组组成的3个测试系统上进行了验证,并与文献中的其他算法进行比较,对超过50次独立运行的结果进行统计度量,实验结果表明CMA-DOL可以获得更好的解决方案.
文摘现代战争中,跨平台武器单元的协同利用,是合同编队体系的重要内容,作战方式也正由平台级协同向着能力要素级协同转变,这对武器目标分配问题的解决提出了更大挑战。本文将武器单元的最小划分单位细化到能力要素级,以毁伤概率与成本消耗为优化目标,面向多种来袭目标的编队防空场景,提出了跨平台武器目标分配算法。同时,基于混沌映射提出了混沌种群重构(chaotic population reconstruction,CPR)机制,并结合带存档的自适应差分进化(adaptive differential evolution with optional external archive,JADE)算法提出了CPR-JADE算法,利用CPR机制可以帮助算法在解决高维复杂约束问题时跳出局部最优。再将其运用到武器目标分配模型上,实现了对模型的高效求解。最后,通过在多种数据规模下与其他进化优化算法的仿真对比试验分析,验证了所提方法的正确性与有效性。