采用MP-PIC (multi-phase particle in cell)方法模拟了三维多段气化炉(上部快速床,下部鼓泡床)多粒径煤粉的循环流化过程,研究了分布板不同进气方向对气化炉内颗粒分布的影响。结果表明:分布板开孔与水平方向夹角越大,物料进入快速床...采用MP-PIC (multi-phase particle in cell)方法模拟了三维多段气化炉(上部快速床,下部鼓泡床)多粒径煤粉的循环流化过程,研究了分布板不同进气方向对气化炉内颗粒分布的影响。结果表明:分布板开孔与水平方向夹角越大,物料进入快速床并形成流化状态越快,但对成形后的流化形态影响较小;分布板进气方向对分布板处的轴向颗粒浓度分布影响较大,对快速床内轴向颗粒浓度分布影响较小;随着分布板进气方向与水平夹角的减小,鼓泡床下部颗粒浓度增大,固相颗粒通量增大;分布板进气方向对旋风分离效率影响较小。因此,工程上可根据需要适当减小分布板进气方向与水平方向的夹角来增加分布板上部颗粒浓度分布。展开更多
文摘采用MP-PIC (multi-phase particle in cell)方法模拟了三维多段气化炉(上部快速床,下部鼓泡床)多粒径煤粉的循环流化过程,研究了分布板不同进气方向对气化炉内颗粒分布的影响。结果表明:分布板开孔与水平方向夹角越大,物料进入快速床并形成流化状态越快,但对成形后的流化形态影响较小;分布板进气方向对分布板处的轴向颗粒浓度分布影响较大,对快速床内轴向颗粒浓度分布影响较小;随着分布板进气方向与水平夹角的减小,鼓泡床下部颗粒浓度增大,固相颗粒通量增大;分布板进气方向对旋风分离效率影响较小。因此,工程上可根据需要适当减小分布板进气方向与水平方向的夹角来增加分布板上部颗粒浓度分布。