The unsteady performance of drag and double reverse propeller podded propulsors in open water was numerically simulated using a computational fluid dynamics (CFD) method. A moving mesh method was used to more realis...The unsteady performance of drag and double reverse propeller podded propulsors in open water was numerically simulated using a computational fluid dynamics (CFD) method. A moving mesh method was used to more realistically simulate propulsor working conditions, and the thrust, torque, and lateral force coefficients of both propulsors were compared and analyzed. Forces acting on different parts of the propulsors along with the flow field distribution of steady and unsteady results at different advance coefficients were compared. Moreover, the change of the lateral force and the difference between the abovementioned two methods were mainly analyzed. It was shown that the thrust and torque results of both methods were similar, with the lateral force results having the highest deviation展开更多
The speed of a ship sailing in waves always slows down due to the decrease in efficiency of the propeller. So it is necessary and essential to analyze the unsteady hydrodynamic performance of propeller in waves. This ...The speed of a ship sailing in waves always slows down due to the decrease in efficiency of the propeller. So it is necessary and essential to analyze the unsteady hydrodynamic performance of propeller in waves. This paper is based on the numerical simulation and experimental research of hydrodynamics performance when the propeller is under wave conditions. Open-water propeller performance in calm water is calculated by commercial codes and the results are compared to experimental values to evaluate the accuracy of the numerical simulation method. The first-order Volume of Fluid(VOF) wave method in STAR CCM+ is utilized to simulate the three-dimensional numerical wave. According to the above prerequisite, the numerical calculation of hydrodynamic performance of the propeller under wave conditions is conducted, and the results reveal that both thrust and torque of the propeller under wave conditions reveal intense unsteady behavior. With the periodic variation of waves, ventilation, and even an effluent phenomenon appears on the propeller. Calculation results indicate, when ventilation or effluent appears, the numerical calculation model can capture the dynamic characteristics of the propeller accurately, thus providing a significant theory foundation forfurther studying the hydrodynamic performance of a propeller in waves.展开更多
Within the OECD/NEA Benchmarking of Thermal-Hydraulic Loop Models for Lead-Alloy Cooled Advanced Nuclear Energy Systems (LACANES), the Institute for Neutron Physics and Reactor Technology takes part in the validatio...Within the OECD/NEA Benchmarking of Thermal-Hydraulic Loop Models for Lead-Alloy Cooled Advanced Nuclear Energy Systems (LACANES), the Institute for Neutron Physics and Reactor Technology takes part in the validation process of system codes and the characterization of the thermal-hydraulic behavior of an experimental loop operated with liquid lead-bismuth-eutectics. To confirm the calculations, the results were compared to experimental data obtained from the HELIOS facility at the Seoul National University and to the results of other benchmark participants. The comparison showed that the calculations are within measurement tolerance but nevertheless discrepancies among the participants exist. The pressure drop estimation is determined by a variety of empirical correlations for the friction and the form loss coefficients. Hence, uncertainty and sensitivity measures were applied to find out which parameter is more relevant for the overall pressure drop. In the frame of this investigation, the system code TRACE and the software system for uncertainty and sensitivity, SUSA, were used. The results show that the total pressure drop varies between -30 and +15% related to the reference case.展开更多
Flood routing models are critical to flood forecasting and confluence calculations. In the streams that dry up and disconnect from groundwater, the streambed infiltration is intensive and has a significant effect on f...Flood routing models are critical to flood forecasting and confluence calculations. In the streams that dry up and disconnect from groundwater, the streambed infiltration is intensive and has a significant effect on flood wave movement. Streambed infiltration should be considered in flood routing. A flood routing model incorporating intensive streambed infiltration is proposed. In the model a streambed infiltration simulation method based on soil infiltration theory is developed. In this method the Horton equation is used to calculate infiltration capacity. A trial-and-error method is developed to calculate infiltration rate and determine whether the flood wave can travel downstream. A formula is derived to calculate infiltration flow per unit length. The Muskingum-Cunge method with streambed infiltration flow as lateral outflow is used for flood routing. The proposed model is applied to the stream from the downstream of the Yuecheng Reservoir to the Caixiaozhuang Hydrometric Station in the Zhangwei River of the Haihe River Basin. Simulation results show that the accuracy of the model is high, and the infiltration simulation method can represent infiltration processes well. The proposed model is simple and practical for flood simulation and forecasting, and can be used in river confluence calculations in a rainfall-runoff model for arid and semiarid regions.展开更多
The valuation of the hydraulic performance of a centrifugal pump with pre-whirl regulation of the inlet guide vanes was studied experimentally by varying the pre-whirl angle from -60° to 60° with distances b...The valuation of the hydraulic performance of a centrifugal pump with pre-whirl regulation of the inlet guide vanes was studied experimentally by varying the pre-whirl angle from -60° to 60° with distances between the inlet guide vanes and the impeller inlet of 280 mm, 380 mm and 460 mm. The efficiency-flow curves and the characteristic curves were obtained for the pump for various operation conditions. The experiment results demonstrated that the pre-whirl regulation widened the high efficiency zone and improved the hydraulic performance for off-design conditions with the proper pre-whirl angle. The axial distance between the inlet guide vanes and the impeller inlet influenced the pre-whirl regulation effect of the inlet guide vanes with the best pre-whirl regulation effect obtained for an axial distance of 380 mm. These results showed that an appropriate axial distance between the inlet guide vanes and the impeller inlet can improve the fluid flow at the impeller entrance with pre-whirl regulation for centrifugal pumps.展开更多
Minipump is widely used in microfluidics system, active cooling system, etc. But building a high efficiency minipump is still a challenging problem. In this paper, a systematic method was developed to design, characte...Minipump is widely used in microfluidics system, active cooling system, etc. But building a high efficiency minipump is still a challenging problem. In this paper, a systematic method was developed to design, characterize and optimize a particular mechanical minipump. The optimization work was conducted to cope with the conflict between pressure head and hydraulic efficiency by an improved back-propagation neural network (BPNN) with the non-dominated sorting genetic algorithm-II (NSGA-II). The improved BPNN was utilized to predicate hydraulic performance and, moreover, was modified to improve the prediction accuracy. The NSGA-II was processed for minipump multi-objective optimization which is dominated by four impeller dimensions. During hydraulic optimization, the processing feasibility was also taken into consideration. Experiments were conducted to validate the above optimization methods. It was proved that the optimized minipump was improved by about 24 % in pressure head and 4.75 % in hydraulic efficiency compared to the original designed prototype. Meanwhile, the sensitivity test was used to analyze the influence of the four impeller dimensions. It was found that the blade outlet angle β2 and the impeller inlet diameter Do significantly influence the pressure head H and the hydraulic efficiency η, respec- tively. Detailed internal flow fields showed that the optimum model can relieve the impeller wake and improve both the pressure distribution and flow orientation.展开更多
基金Supported by National Natural Science Foundation of China (41176074, 51209048,51379043,51409063) High tech ship research project of Ministry of industry and technology (G014613002) The support plan for youth backbone teachers of Harbin Engineering University (HEUCFQ1408)
文摘The unsteady performance of drag and double reverse propeller podded propulsors in open water was numerically simulated using a computational fluid dynamics (CFD) method. A moving mesh method was used to more realistically simulate propulsor working conditions, and the thrust, torque, and lateral force coefficients of both propulsors were compared and analyzed. Forces acting on different parts of the propulsors along with the flow field distribution of steady and unsteady results at different advance coefficients were compared. Moreover, the change of the lateral force and the difference between the abovementioned two methods were mainly analyzed. It was shown that the thrust and torque results of both methods were similar, with the lateral force results having the highest deviation
基金Supported by the National Natural Science Foundation of China (51379043, 41176074, 51209048, 51409063), High Tech Ship Research Project of Ministry of Industry and Technology (G014613002), and the Support Plan for Youth Backbone Teachers of Harbin Engineering University (HEUCFQ 1408)
文摘The speed of a ship sailing in waves always slows down due to the decrease in efficiency of the propeller. So it is necessary and essential to analyze the unsteady hydrodynamic performance of propeller in waves. This paper is based on the numerical simulation and experimental research of hydrodynamics performance when the propeller is under wave conditions. Open-water propeller performance in calm water is calculated by commercial codes and the results are compared to experimental values to evaluate the accuracy of the numerical simulation method. The first-order Volume of Fluid(VOF) wave method in STAR CCM+ is utilized to simulate the three-dimensional numerical wave. According to the above prerequisite, the numerical calculation of hydrodynamic performance of the propeller under wave conditions is conducted, and the results reveal that both thrust and torque of the propeller under wave conditions reveal intense unsteady behavior. With the periodic variation of waves, ventilation, and even an effluent phenomenon appears on the propeller. Calculation results indicate, when ventilation or effluent appears, the numerical calculation model can capture the dynamic characteristics of the propeller accurately, thus providing a significant theory foundation forfurther studying the hydrodynamic performance of a propeller in waves.
文摘Within the OECD/NEA Benchmarking of Thermal-Hydraulic Loop Models for Lead-Alloy Cooled Advanced Nuclear Energy Systems (LACANES), the Institute for Neutron Physics and Reactor Technology takes part in the validation process of system codes and the characterization of the thermal-hydraulic behavior of an experimental loop operated with liquid lead-bismuth-eutectics. To confirm the calculations, the results were compared to experimental data obtained from the HELIOS facility at the Seoul National University and to the results of other benchmark participants. The comparison showed that the calculations are within measurement tolerance but nevertheless discrepancies among the participants exist. The pressure drop estimation is determined by a variety of empirical correlations for the friction and the form loss coefficients. Hence, uncertainty and sensitivity measures were applied to find out which parameter is more relevant for the overall pressure drop. In the frame of this investigation, the system code TRACE and the software system for uncertainty and sensitivity, SUSA, were used. The results show that the total pressure drop varies between -30 and +15% related to the reference case.
基金supported by the National Natural Science Foundation of China(Grant Nos.51279223,51109055,51409169,51309004,51409141)the Public Welfare Industry Funding for Research and Special Projects of Ministry of Water Resources of China(Grant Nos.201001074,201201022)the Open Foundation of State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering(Grant No.2013491011)
文摘Flood routing models are critical to flood forecasting and confluence calculations. In the streams that dry up and disconnect from groundwater, the streambed infiltration is intensive and has a significant effect on flood wave movement. Streambed infiltration should be considered in flood routing. A flood routing model incorporating intensive streambed infiltration is proposed. In the model a streambed infiltration simulation method based on soil infiltration theory is developed. In this method the Horton equation is used to calculate infiltration capacity. A trial-and-error method is developed to calculate infiltration rate and determine whether the flood wave can travel downstream. A formula is derived to calculate infiltration flow per unit length. The Muskingum-Cunge method with streambed infiltration flow as lateral outflow is used for flood routing. The proposed model is applied to the stream from the downstream of the Yuecheng Reservoir to the Caixiaozhuang Hydrometric Station in the Zhangwei River of the Haihe River Basin. Simulation results show that the accuracy of the model is high, and the infiltration simulation method can represent infiltration processes well. The proposed model is simple and practical for flood simulation and forecasting, and can be used in river confluence calculations in a rainfall-runoff model for arid and semiarid regions.
基金supported by the National Natural Science Foundation of China (Grant No. 51176088)the National Basic Research Program of China ("973" Project) (Grant No. 2009CB724304) the General Financial Grant from the China Postdoctoral Science Foundation (Grant No. 2011M500315)
文摘The valuation of the hydraulic performance of a centrifugal pump with pre-whirl regulation of the inlet guide vanes was studied experimentally by varying the pre-whirl angle from -60° to 60° with distances between the inlet guide vanes and the impeller inlet of 280 mm, 380 mm and 460 mm. The efficiency-flow curves and the characteristic curves were obtained for the pump for various operation conditions. The experiment results demonstrated that the pre-whirl regulation widened the high efficiency zone and improved the hydraulic performance for off-design conditions with the proper pre-whirl angle. The axial distance between the inlet guide vanes and the impeller inlet influenced the pre-whirl regulation effect of the inlet guide vanes with the best pre-whirl regulation effect obtained for an axial distance of 380 mm. These results showed that an appropriate axial distance between the inlet guide vanes and the impeller inlet can improve the fluid flow at the impeller entrance with pre-whirl regulation for centrifugal pumps.
文摘Minipump is widely used in microfluidics system, active cooling system, etc. But building a high efficiency minipump is still a challenging problem. In this paper, a systematic method was developed to design, characterize and optimize a particular mechanical minipump. The optimization work was conducted to cope with the conflict between pressure head and hydraulic efficiency by an improved back-propagation neural network (BPNN) with the non-dominated sorting genetic algorithm-II (NSGA-II). The improved BPNN was utilized to predicate hydraulic performance and, moreover, was modified to improve the prediction accuracy. The NSGA-II was processed for minipump multi-objective optimization which is dominated by four impeller dimensions. During hydraulic optimization, the processing feasibility was also taken into consideration. Experiments were conducted to validate the above optimization methods. It was proved that the optimized minipump was improved by about 24 % in pressure head and 4.75 % in hydraulic efficiency compared to the original designed prototype. Meanwhile, the sensitivity test was used to analyze the influence of the four impeller dimensions. It was found that the blade outlet angle β2 and the impeller inlet diameter Do significantly influence the pressure head H and the hydraulic efficiency η, respec- tively. Detailed internal flow fields showed that the optimum model can relieve the impeller wake and improve both the pressure distribution and flow orientation.