The results of field tests of the catalyst "Mukhamedzhan-l" for the detoxification of propellant UDMH (unsymmetrical dimethylhydrazine) in the position the space center "Baikonur" in Kazakhstan were studied. Res...The results of field tests of the catalyst "Mukhamedzhan-l" for the detoxification of propellant UDMH (unsymmetrical dimethylhydrazine) in the position the space center "Baikonur" in Kazakhstan were studied. Results of field tests have shown high efficiency of the catalyst "Mukhamedzhan- 1" for detoxification UDMH.展开更多
A virtual reconfigurable architecture(VRA)-based evolvable hardware is proposed for automatic synthesis of combinational logic circuits at gate-level.The proposed VRA is implemented by a Celoxica RC1000 peripheral com...A virtual reconfigurable architecture(VRA)-based evolvable hardware is proposed for automatic synthesis of combinational logic circuits at gate-level.The proposed VRA is implemented by a Celoxica RC1000 peripheral component interconnect(PCI)board with an Xilinx Virtex xcv2000E field programmable gate array(FPGA).To improve the quality of the evolved circuits,the VRA works through a two-stage evolution: finding a functional circuit and minimizing the number of logic gates used in a feasible circuit.To optimize the algorithm performance in the two-stage evolutionary process and set free the user from the time-consuming process of mutation parameter tuning,a self-adaptive mutation rate control(SAMRC)scheme is introduced.In the evolutionary process,the mutation rate control parameters are encoded as additional genes in the chromosome and also undergo evolutionary operations.The efficiency of the proposed methodology is tested with the evolutions of a 4-bit even parity function,a 2-bit multiplier,and a 3-bit multiplier.The obtained results demonstrate that our scheme improves the evolutionary design of combinational logic circuits in terms of quality of the evolved circuit as well as the computational effort,when compared to the existing evolvable hardware approaches.展开更多
Some new innovative constructions and piling technologies for improvement of offshore and port berthing structures are worked out and discussed. The aims of innovations are to decrease required power of construction ...Some new innovative constructions and piling technologies for improvement of offshore and port berthing structures are worked out and discussed. The aims of innovations are to decrease required power of construction (in particular, piling) equipment and, correspondingly, to improve environmental situation at the construction site. Another achieved goal is providing long tubular piles installation in hard soils conditions without application of very heavy and powerful driving machines. Worked out solutions are based on two approaches. One of them provides separate loading of driving force on pile's shaft and pile's tip concentrating the whole driving force on one of the mentioned parts of the pile. Another approach is focused on prevention of soil plug formation inside of the tubular pile tip facilitating the pile installation process. Also improved anchorage system for sheet piling seafront walls is presented and discussed. All considered innovations are patented and can be used in wide range of marine, offshore, coastal and harbor structures.展开更多
文摘The results of field tests of the catalyst "Mukhamedzhan-l" for the detoxification of propellant UDMH (unsymmetrical dimethylhydrazine) in the position the space center "Baikonur" in Kazakhstan were studied. Results of field tests have shown high efficiency of the catalyst "Mukhamedzhan- 1" for detoxification UDMH.
基金Projects(61203308,61309014)supported by the National Natural Science Foundation of China
文摘A virtual reconfigurable architecture(VRA)-based evolvable hardware is proposed for automatic synthesis of combinational logic circuits at gate-level.The proposed VRA is implemented by a Celoxica RC1000 peripheral component interconnect(PCI)board with an Xilinx Virtex xcv2000E field programmable gate array(FPGA).To improve the quality of the evolved circuits,the VRA works through a two-stage evolution: finding a functional circuit and minimizing the number of logic gates used in a feasible circuit.To optimize the algorithm performance in the two-stage evolutionary process and set free the user from the time-consuming process of mutation parameter tuning,a self-adaptive mutation rate control(SAMRC)scheme is introduced.In the evolutionary process,the mutation rate control parameters are encoded as additional genes in the chromosome and also undergo evolutionary operations.The efficiency of the proposed methodology is tested with the evolutions of a 4-bit even parity function,a 2-bit multiplier,and a 3-bit multiplier.The obtained results demonstrate that our scheme improves the evolutionary design of combinational logic circuits in terms of quality of the evolved circuit as well as the computational effort,when compared to the existing evolvable hardware approaches.
文摘Some new innovative constructions and piling technologies for improvement of offshore and port berthing structures are worked out and discussed. The aims of innovations are to decrease required power of construction (in particular, piling) equipment and, correspondingly, to improve environmental situation at the construction site. Another achieved goal is providing long tubular piles installation in hard soils conditions without application of very heavy and powerful driving machines. Worked out solutions are based on two approaches. One of them provides separate loading of driving force on pile's shaft and pile's tip concentrating the whole driving force on one of the mentioned parts of the pile. Another approach is focused on prevention of soil plug formation inside of the tubular pile tip facilitating the pile installation process. Also improved anchorage system for sheet piling seafront walls is presented and discussed. All considered innovations are patented and can be used in wide range of marine, offshore, coastal and harbor structures.