A new inexpensive vineyard protection against hailstorm has been realized and tested. The system has been designed and organized in such a way to perform autonomously local activities to physically control the protect...A new inexpensive vineyard protection against hailstorm has been realized and tested. The system has been designed and organized in such a way to perform autonomously local activities to physically control the protection of the vineyard but also to transmit information toward a remote control. Each row has an "umbrella" designed by the authors which, unlike other commercial solutions, protects the product without hindering all the mechanical activities typical of a modem vineyard. Locally the single umbrella uses an electronic card for the management and a ZigBee mesh telecommunication network to transmit data to a central control unit which manages the protection. Because of its efficiency, a Raspberry-Pi control card has been chosen as central unit. Finally, a WiMAX connection was chosen to remotely control the system, thus allowing the authors to overcome distance limitations of commercial Wi-Fi networks. The system has been realized and tested for some months in field also during a hailstorm. The results of these tests proved how the system is easy to use and effectively protects against hail; moreover the authors proved the high reliability of the mechanical components which allow the authors to lower the maintenance costs.展开更多
文摘A new inexpensive vineyard protection against hailstorm has been realized and tested. The system has been designed and organized in such a way to perform autonomously local activities to physically control the protection of the vineyard but also to transmit information toward a remote control. Each row has an "umbrella" designed by the authors which, unlike other commercial solutions, protects the product without hindering all the mechanical activities typical of a modem vineyard. Locally the single umbrella uses an electronic card for the management and a ZigBee mesh telecommunication network to transmit data to a central control unit which manages the protection. Because of its efficiency, a Raspberry-Pi control card has been chosen as central unit. Finally, a WiMAX connection was chosen to remotely control the system, thus allowing the authors to overcome distance limitations of commercial Wi-Fi networks. The system has been realized and tested for some months in field also during a hailstorm. The results of these tests proved how the system is easy to use and effectively protects against hail; moreover the authors proved the high reliability of the mechanical components which allow the authors to lower the maintenance costs.