The quantum teleportation with the entangled thermai state is investigated based on the completely anisotropie Heisenberg chain in the presence of the externally inhomogeneous magnetic field. The effects of the anisot...The quantum teleportation with the entangled thermai state is investigated based on the completely anisotropie Heisenberg chain in the presence of the externally inhomogeneous magnetic field. The effects of the anisotropy and magnetic field for the quantum fidelity are studied in detail The zero temperature limit and the features of the nonzero temperature for this nonclassical fdelity are obtained. We find that the quantum teleportation demands more stringent conditions than the therma/ entanglement of the resource by investigating the threshold temperature of the thermal concurrence and the criticai temperature of the maximai teleportation fidelity. The useful quantum teleportation should avoid the point of the phase transition of the system and the anisotropy of the chain and the external magnetic field can control the applicability of the resource in the quantum teleportation.展开更多
基金Supported by the Special Research Fund Provided by the Chonnam National University
文摘The quantum teleportation with the entangled thermai state is investigated based on the completely anisotropie Heisenberg chain in the presence of the externally inhomogeneous magnetic field. The effects of the anisotropy and magnetic field for the quantum fidelity are studied in detail The zero temperature limit and the features of the nonzero temperature for this nonclassical fdelity are obtained. We find that the quantum teleportation demands more stringent conditions than the therma/ entanglement of the resource by investigating the threshold temperature of the thermal concurrence and the criticai temperature of the maximai teleportation fidelity. The useful quantum teleportation should avoid the point of the phase transition of the system and the anisotropy of the chain and the external magnetic field can control the applicability of the resource in the quantum teleportation.