In this paper,an improved Susceptible-Infected-Susceptible(SIS) epidemic spreading model is proposed in order to provide a theoretical method to analyze and predict the spreading of diseases.This model is based on the...In this paper,an improved Susceptible-Infected-Susceptible(SIS) epidemic spreading model is proposed in order to provide a theoretical method to analyze and predict the spreading of diseases.This model is based on the following ideas:in social networks,the contact probability between nodes is decided by their social distances and their active degrees.The contact probability of two indirectly connected nodes is decided by the shortest path between them.Theoretical analysis and simulation experiment were conducted to evaluate the performance of this improved model.Because the proposed model is independent of the network structure,simulation experiments were done in several kinds of networks,namely the ER network,the random regular network,the WS small world network,and the BA scale-free network,in order to study the influences of certain factors have on the epidemic spreading,such as the social contact active degree,the network structure,the average degree,etc.This improved model provides an idea for studying the spreading rule of computer virus,attitudes,fashion styles and public opinions in social networks.展开更多
Failure of one or multiple critical nodes may partition wireless sensor networks into disjoint segments, and thus brings negative effect on the applications. We propose DCRS, a Distributed Connectivity Restoration Str...Failure of one or multiple critical nodes may partition wireless sensor networks into disjoint segments, and thus brings negative effect on the applications. We propose DCRS, a Distributed Connectivity Restoration Strategy to tolerate the failure of one critical node. Because of the energy restriction of sensor nodes, the energy overhead of the recovery process should be minimized to extend the lifetime of the network. To achieve it, we first design a novel algorithm to identify 2-critical nodes only relying on the positional information of 1-hop neighbors and some 2-hop neighbors, and then we present the criteria to select an appropriate backup for each critical node. Finally, we improve the cascaded node movement algorithm by determining whether a node can move to another non-adjacent node directly or not to reduce the number of nodes moved. The effectiveness of DCRS is validated through extensive simulation experiments.展开更多
基金supported by National Natural Science Foundation of China 61301091Shaanxi Province Science and Technology Project 2015GY015
文摘In this paper,an improved Susceptible-Infected-Susceptible(SIS) epidemic spreading model is proposed in order to provide a theoretical method to analyze and predict the spreading of diseases.This model is based on the following ideas:in social networks,the contact probability between nodes is decided by their social distances and their active degrees.The contact probability of two indirectly connected nodes is decided by the shortest path between them.Theoretical analysis and simulation experiment were conducted to evaluate the performance of this improved model.Because the proposed model is independent of the network structure,simulation experiments were done in several kinds of networks,namely the ER network,the random regular network,the WS small world network,and the BA scale-free network,in order to study the influences of certain factors have on the epidemic spreading,such as the social contact active degree,the network structure,the average degree,etc.This improved model provides an idea for studying the spreading rule of computer virus,attitudes,fashion styles and public opinions in social networks.
文摘Failure of one or multiple critical nodes may partition wireless sensor networks into disjoint segments, and thus brings negative effect on the applications. We propose DCRS, a Distributed Connectivity Restoration Strategy to tolerate the failure of one critical node. Because of the energy restriction of sensor nodes, the energy overhead of the recovery process should be minimized to extend the lifetime of the network. To achieve it, we first design a novel algorithm to identify 2-critical nodes only relying on the positional information of 1-hop neighbors and some 2-hop neighbors, and then we present the criteria to select an appropriate backup for each critical node. Finally, we improve the cascaded node movement algorithm by determining whether a node can move to another non-adjacent node directly or not to reduce the number of nodes moved. The effectiveness of DCRS is validated through extensive simulation experiments.