The impact of the adaptive cruise control( ACC)system on improving fuel efficiency is evaluated based on the vehicle-specific power. The intelligent driver model was first modified to simulate the ACC system and it ...The impact of the adaptive cruise control( ACC)system on improving fuel efficiency is evaluated based on the vehicle-specific power. The intelligent driver model was first modified to simulate the ACC system and it was calibrated by using empirical traffic data. Then, a five-step procedure based on the vehicle-specific power was introduced to calculate fuel efficiency. Five scenarios with different ACC ratios were tested in simulation experiments, and sensitivity analyses of two key ACC factors affecting the perception-reaction time and time headway were also conducted. The simulation results indicate that all the scenarios with ACC vehicles have positive impacts on reducing fuel consumption. Furthermore, from the perspective of fuel efficiency, the extremely small value of the perception-reaction time of the ACC system is not necessary due to the fact that the value of 0.5 and 0.1 s can almost lead to the same reduction in fuel consumption. Finally, the designed time headway of the ACC system is also proposed to be large enough for fuel efficiency, although its small value can increase capacity. The findings of this study provide useful information for connected vehicles and autonomous vehicle manufacturers to improve fuel efficiency on roadways.展开更多
In this paper we analyze connectivity of one-dimensional Vehicular Ad Hoc Networks where vehicle gap distribution can be approximat- ed by an exponential distribution. The probabilities of Vehicular Ad Hoc Network con...In this paper we analyze connectivity of one-dimensional Vehicular Ad Hoc Networks where vehicle gap distribution can be approximat- ed by an exponential distribution. The probabilities of Vehicular Ad Hoc Network connectivity for difference cases are derived. Furthermore we proof that the nodes in a sub-interval [z1, z1 + △z] of interval [0,z],z 〉 0 where all the nodes are independently uniform distributed is a Poisson process and the relationship of Vehicle Ad hoc Networks and one-dimensional Ad Hoc networks where nodes independently uniform distributed in [zl, z1 + △z] is explained. The analysis is validated by computing the probability of network connectivity and comparing it with the Mont Carlo simu- lation results.展开更多
Due to the road-constrained data delivery and highly dynamic topology of vehicle nodes in a Vehicular Ad Hoc Network (VANET), it is better to construct routing based on the road-to-road pattern than the traditional no...Due to the road-constrained data delivery and highly dynamic topology of vehicle nodes in a Vehicular Ad Hoc Network (VANET), it is better to construct routing based on the road-to-road pattern than the traditional node-to-node routing pattern in MANETs. However, the challenging issue is the opportunistic forwarding at intersections. Therefore, we propose a novel routing scheme, called Buffer and Switch (BAS). In BAS, each road buffers the data packets with multiple duplicates propagation in order to provide more opportunities for packet switching at intersections. Different from conventional protocols in VANETs, the propagation of duplicates in BAS is bidirectional along the routing path. Moreover, BAS's cost is much lower than other flooding-based protocols due to its spatio-temporally controlled duplicates propagation. Different from recent researches, BAS can deliver packets not only to a stationary node, but also to the stationary or mobile nodes in a specified area. We conduct the extensive simulations to evaluate the performance of BAS based on the road map of a real city collected from Google Earth. The simulation results show that BAS can outperform the existing protocols, especially when the network resources are limited.展开更多
The concept of connected vehicles is with great potentials for enhancing the road transportation systems in the future. To support the functions and applications under the connected vehicles frame, the estimation of d...The concept of connected vehicles is with great potentials for enhancing the road transportation systems in the future. To support the functions and applications under the connected vehicles frame, the estimation of dynamic states of the vehicles under the cooperative environments is a fundamental issue. By integrating multiple sensors, localization modules in OBUs(on-board units) require effective estimation solutions to cope with various operation conditions. Based on the filtering estimation framework for sensor fusion, an ensemble Kalman filter(En KF) is introduced to estimate the vehicle's state with observations from navigation satellites and neighborhood vehicles, and the original En KF solution is improved by using the cubature transformation to fulfill the requirements of the nonlinearity approximation capability, where the conventional ensemble analysis operation in En KF is modified to enhance the estimation performance without increasing the computational burden significantly. Simulation results from a nonlinear case and the cooperative vehicle localization scenario illustrate the capability of the proposed filter, which is crucial to realize the active safety of connected vehicles in future intelligent transportation.展开更多
To protect passengers, absorb enough kinetic energy and meet the special requirements for trains which are different from the other means of transportation, a method is presented to realize the plastic deformation thr...To protect passengers, absorb enough kinetic energy and meet the special requirements for trains which are different from the other means of transportation, a method is presented to realize the plastic deformation threshold based on three main aspects of train connection structure, crashworthy vehicle structure, energy-absorbing component. In practical engineering, trains need enough strength and stiffness to transfer longitudinal force under the normal operation condition, and have to produce controllable large plastic dcfbrmation to absorb energy shortly under the collision condition. To realize the structural damage threshold of connecting structure in terminal end, two control methods are also proposed which can be divided as the parametric method based on 'extrusion' and 'cutting' theories; the method which can cut the connecting components between coupler-buffer devices and train bodies and separate them away when the damage thresholds of coupler-buffer devices are more than the pre-supposed damage thresholds. The damage thresholds can be realized based on changing the parameters of the number of shearing bolts, material parameters, etc. To realize the collision threshold of energy-absorbing components of trains, a control method is presented based on the ways of setting plastic deformation induced structure, local hole and pre-deformation structure. To realize the threshold of the controllable plastic structure of energy-absorbing vehicles, a control method is proposed for the multi-level longitudinal stiffness of train terminal structures.展开更多
In this paper, we investigate the connectivity of vehicular ad hoc networks in free-flow traffic situation with channel randonmess. In order to illustrate the realistic environment, we consider that vehicles are distr...In this paper, we investigate the connectivity of vehicular ad hoc networks in free-flow traffic situation with channel randonmess. In order to illustrate the realistic environment, we consider that vehicles are distributed in free-flow highway according to a Poisson point process, and signal propagation between connected vehicles is subjected to log-normal shadowing effects. We obtain the distribution of the space headway between successive vehicles and the distribution of signal coverage, which allows us to use the equivalent M/G/z~ queue theory to model the connectivity of VANETs in the form of average broadcast percolation distance and average number of connected nodes. Then, extensive simulation studies are conducted to evaluate the obtained results. The analytical model presented here is able to describe the impact of various system parameters, including traffic parameters and signal propagation parameters on the con- nectivity. We use our analytical results, along with the common signal propagation data, to understand impact of channel randomness on the connectivity of VANETs.展开更多
When a four in-wheel motors drive electric vehicle with a specific wheels mass is running on an uneven road and transient steering occurs in the meantime, the joint action of the large unsprung dynamic load and the ce...When a four in-wheel motors drive electric vehicle with a specific wheels mass is running on an uneven road and transient steering occurs in the meantime, the joint action of the large unsprung dynamic load and the centrifugal force may cause the vehicle to rollover. To avoid the above accident, a rollover prevention control method based on active distribution of the in-wheel motors driving torques is investigated. First, tile rollover evolution process of the four in-wheel motors drive electric vehicle under the described operating condition is analyzed. Next, a multiple degrees of freedom vehicle dynamics model including an uneven road tyre model is established, and the rollover warning threshold is determined according to the load transfer ratio. Then, the hypothesis of the effects of unsprung mass on the vehicle roll stability on a plat road and on an uneven road is verified respectively. Finally, a rollover prevention controller is designed based on the distribution of the four wheels driving torques with sliding mode control, and the control effect is verified by simulations. The conclusion shows that, once the wheels mass does not match road conditions, the large unsprung mass may play a detrimental role on the vehicle roll stability on an uneven road, which is different from the beneficial role of large unsprung mass on the vehicle roll stability on a plat road. With the aforementioned rollover prevention controller, the vehicle rollover, which is caused by the coupling effect between large unsprung dynamic load and suspension potential energy on an uneven road, can be avoided effectively.展开更多
Intelligent connected vehicles(ICVs) are believed to change people's life in the near future by making the transportation safer,cleaner and more comfortable. Although many prototypes of ICVs have been developed to...Intelligent connected vehicles(ICVs) are believed to change people's life in the near future by making the transportation safer,cleaner and more comfortable. Although many prototypes of ICVs have been developed to prove the concept of autonomous driving and the feasibility of improving traffic efficiency, there still exists a significant gap before achieving mass production of high-level ICVs. The objective of this study is to present an overview of both the state of the art and future perspectives of key technologies that are needed for future ICVs. It is a challenging task to review all related works and predict their future perspectives, especially for such a complex and interdisciplinary area of research. This article is organized to overview the ICV key technologies by answering three questions: what are the milestones in the history of ICVs; what are the electronic components needed for building an ICV platform; and what are the essential algorithms to enable intelligent driving? To answer the first question, the article has reviewed the history and the development milestones of ICVs. For the second question, the recent technology advances in electrical/electronic architecture, sensors, and actuators are presented. For the third question, the article focuses on the algorithms in decision making, as the perception and control algorithm are covered in the development of sensors and actuators. To achieve correct decision-making, there exist two different approaches: the principle-based approach and data-driven approach. The advantages and limitations of both approaches are explained and analyzed. Currently automotive engineers are concerned more with the vehicle platform technology, whereas the academic researchers prefer to focus on theoretical algorithms. However, only by incorporating elements from both worlds can we accelerate the production of high-level ICVs.展开更多
Enzymeless hydrogen peroxide (H2O2) detection with high sensitivity and excellent selectivity is desirable for clinical diagnosis. Herein, one-dimensional Co3O4 nanowires have been successfully constructed on reduce...Enzymeless hydrogen peroxide (H2O2) detection with high sensitivity and excellent selectivity is desirable for clinical diagnosis. Herein, one-dimensional Co3O4 nanowires have been successfully constructed on reduced graphene oxide (rGO) via a simple hydrothermal procedure and subsequent thermal treatment. These Co3O4 nanowires, assembled by small nanoparticles, are interlaced with one another and make a spider web-like structure on rGO. The formation of Co3O4-rGO hybrids is attributed to the structure-directing and anchoring roles of DDA and GO, respectively. The resulting structure possesses abundant active sites, the oriented transmission of electrons, and unimpeded pathways for matter diffusion, which endows the Co3O4-rGO hybrids with excellent electrocatalytic performance. As a result, the obtained Co3O4-rGO hybrids can serve as an efficient electrochemical catalyst for H2O2 oxidation and high sensitivity detection. Under physiological conditions, the oxidation current of H2O2 varies linearly with respect to its concentration from 0.015 to 0.675 mM with a sensitivity of 1.14 mA.mM^-1.cm^-2 and a low detection limit of 2.4 μM. Furthermore, the low potential (-0.19 V) and the good selectivity make Co3O4-rGO hybrids suitable for monitoring H2O2 generated by liver cancer HepG2 cells. Therefore, it is promising as a non-enzymatic sensor to achieve real-time quantitative detection of H2O2 in biological applications.展开更多
基金The National Natural Science Foundation of China(No.51338003,51478113,51378120)
文摘The impact of the adaptive cruise control( ACC)system on improving fuel efficiency is evaluated based on the vehicle-specific power. The intelligent driver model was first modified to simulate the ACC system and it was calibrated by using empirical traffic data. Then, a five-step procedure based on the vehicle-specific power was introduced to calculate fuel efficiency. Five scenarios with different ACC ratios were tested in simulation experiments, and sensitivity analyses of two key ACC factors affecting the perception-reaction time and time headway were also conducted. The simulation results indicate that all the scenarios with ACC vehicles have positive impacts on reducing fuel consumption. Furthermore, from the perspective of fuel efficiency, the extremely small value of the perception-reaction time of the ACC system is not necessary due to the fact that the value of 0.5 and 0.1 s can almost lead to the same reduction in fuel consumption. Finally, the designed time headway of the ACC system is also proposed to be large enough for fuel efficiency, although its small value can increase capacity. The findings of this study provide useful information for connected vehicles and autonomous vehicle manufacturers to improve fuel efficiency on roadways.
基金supported by National Science Fund for Distinguished Young Scholars (No.60525110)National 973 Program (No. 2007CB307100, 2007CB307103)+2 种基金National Natural Science Foundation of China (No. 60902051)Chinese Universities Scientific Fund (BUP-T2009RC0505)Development Fund Project for Electronic and Information Industry (Mobile Service and Application System Based on 3G)
文摘In this paper we analyze connectivity of one-dimensional Vehicular Ad Hoc Networks where vehicle gap distribution can be approximat- ed by an exponential distribution. The probabilities of Vehicular Ad Hoc Network connectivity for difference cases are derived. Furthermore we proof that the nodes in a sub-interval [z1, z1 + △z] of interval [0,z],z 〉 0 where all the nodes are independently uniform distributed is a Poisson process and the relationship of Vehicle Ad hoc Networks and one-dimensional Ad Hoc networks where nodes independently uniform distributed in [zl, z1 + △z] is explained. The analysis is validated by computing the probability of network connectivity and comparing it with the Mont Carlo simu- lation results.
基金supported by the National Natural Science Foundation of China under Grants No. 60903155,No. 60903156,No.60903158,No. 61003229the Fundamental Research Funds for the Central Universities under Grants No. ZYGX2009J063, No.ZYGX2010J074
文摘Due to the road-constrained data delivery and highly dynamic topology of vehicle nodes in a Vehicular Ad Hoc Network (VANET), it is better to construct routing based on the road-to-road pattern than the traditional node-to-node routing pattern in MANETs. However, the challenging issue is the opportunistic forwarding at intersections. Therefore, we propose a novel routing scheme, called Buffer and Switch (BAS). In BAS, each road buffers the data packets with multiple duplicates propagation in order to provide more opportunities for packet switching at intersections. Different from conventional protocols in VANETs, the propagation of duplicates in BAS is bidirectional along the routing path. Moreover, BAS's cost is much lower than other flooding-based protocols due to its spatio-temporally controlled duplicates propagation. Different from recent researches, BAS can deliver packets not only to a stationary node, but also to the stationary or mobile nodes in a specified area. We conduct the extensive simulations to evaluate the performance of BAS based on the road map of a real city collected from Google Earth. The simulation results show that BAS can outperform the existing protocols, especially when the network resources are limited.
基金Project(4144081)supported by Beijing Natural Science Foundation,ChinaProjects(61403021,U1334211,61490705)supported by the National Natural Science Foundation of China+1 种基金Project(2015RC015)supported by the Fundamental Research Funds for Central Universities,ChinaProject supported by the Foundation of Beijing Key Laboratory for Cooperative Vehicle Infrastructure Systems and Safety Control,China
文摘The concept of connected vehicles is with great potentials for enhancing the road transportation systems in the future. To support the functions and applications under the connected vehicles frame, the estimation of dynamic states of the vehicles under the cooperative environments is a fundamental issue. By integrating multiple sensors, localization modules in OBUs(on-board units) require effective estimation solutions to cope with various operation conditions. Based on the filtering estimation framework for sensor fusion, an ensemble Kalman filter(En KF) is introduced to estimate the vehicle's state with observations from navigation satellites and neighborhood vehicles, and the original En KF solution is improved by using the cubature transformation to fulfill the requirements of the nonlinearity approximation capability, where the conventional ensemble analysis operation in En KF is modified to enhance the estimation performance without increasing the computational burden significantly. Simulation results from a nonlinear case and the cooperative vehicle localization scenario illustrate the capability of the proposed filter, which is crucial to realize the active safety of connected vehicles in future intelligent transportation.
基金Project(2005J002) supported by the Foundation of the Science and Technology Section of the Ministry of Railway of China
文摘To protect passengers, absorb enough kinetic energy and meet the special requirements for trains which are different from the other means of transportation, a method is presented to realize the plastic deformation threshold based on three main aspects of train connection structure, crashworthy vehicle structure, energy-absorbing component. In practical engineering, trains need enough strength and stiffness to transfer longitudinal force under the normal operation condition, and have to produce controllable large plastic dcfbrmation to absorb energy shortly under the collision condition. To realize the structural damage threshold of connecting structure in terminal end, two control methods are also proposed which can be divided as the parametric method based on 'extrusion' and 'cutting' theories; the method which can cut the connecting components between coupler-buffer devices and train bodies and separate them away when the damage thresholds of coupler-buffer devices are more than the pre-supposed damage thresholds. The damage thresholds can be realized based on changing the parameters of the number of shearing bolts, material parameters, etc. To realize the collision threshold of energy-absorbing components of trains, a control method is presented based on the ways of setting plastic deformation induced structure, local hole and pre-deformation structure. To realize the threshold of the controllable plastic structure of energy-absorbing vehicles, a control method is proposed for the multi-level longitudinal stiffness of train terminal structures.
基金Supported by the National Natural Science Foundation of China (No. 60873192,61070182)
文摘In this paper, we investigate the connectivity of vehicular ad hoc networks in free-flow traffic situation with channel randonmess. In order to illustrate the realistic environment, we consider that vehicles are distributed in free-flow highway according to a Poisson point process, and signal propagation between connected vehicles is subjected to log-normal shadowing effects. We obtain the distribution of the space headway between successive vehicles and the distribution of signal coverage, which allows us to use the equivalent M/G/z~ queue theory to model the connectivity of VANETs in the form of average broadcast percolation distance and average number of connected nodes. Then, extensive simulation studies are conducted to evaluate the obtained results. The analytical model presented here is able to describe the impact of various system parameters, including traffic parameters and signal propagation parameters on the con- nectivity. We use our analytical results, along with the common signal propagation data, to understand impact of channel randomness on the connectivity of VANETs.
基金supported by the National Natural Science Foundation of China(Grant Nos.51405259&51775478)
文摘When a four in-wheel motors drive electric vehicle with a specific wheels mass is running on an uneven road and transient steering occurs in the meantime, the joint action of the large unsprung dynamic load and the centrifugal force may cause the vehicle to rollover. To avoid the above accident, a rollover prevention control method based on active distribution of the in-wheel motors driving torques is investigated. First, tile rollover evolution process of the four in-wheel motors drive electric vehicle under the described operating condition is analyzed. Next, a multiple degrees of freedom vehicle dynamics model including an uneven road tyre model is established, and the rollover warning threshold is determined according to the load transfer ratio. Then, the hypothesis of the effects of unsprung mass on the vehicle roll stability on a plat road and on an uneven road is verified respectively. Finally, a rollover prevention controller is designed based on the distribution of the four wheels driving torques with sliding mode control, and the control effect is verified by simulations. The conclusion shows that, once the wheels mass does not match road conditions, the large unsprung mass may play a detrimental role on the vehicle roll stability on an uneven road, which is different from the beneficial role of large unsprung mass on the vehicle roll stability on a plat road. With the aforementioned rollover prevention controller, the vehicle rollover, which is caused by the coupling effect between large unsprung dynamic load and suspension potential energy on an uneven road, can be avoided effectively.
基金supported by the International Science and Technology Cooperation Program of China(Grant No.2016YFE0102200)the National Natural Science Foundation of China(Grant No.61773234)+1 种基金the National Key R&D Program of China(Grant No.2108YFB0105004)and Beijing Municipal Science and Technology Commission(Grant Nos.D171100005117001&D171100005117002)
文摘Intelligent connected vehicles(ICVs) are believed to change people's life in the near future by making the transportation safer,cleaner and more comfortable. Although many prototypes of ICVs have been developed to prove the concept of autonomous driving and the feasibility of improving traffic efficiency, there still exists a significant gap before achieving mass production of high-level ICVs. The objective of this study is to present an overview of both the state of the art and future perspectives of key technologies that are needed for future ICVs. It is a challenging task to review all related works and predict their future perspectives, especially for such a complex and interdisciplinary area of research. This article is organized to overview the ICV key technologies by answering three questions: what are the milestones in the history of ICVs; what are the electronic components needed for building an ICV platform; and what are the essential algorithms to enable intelligent driving? To answer the first question, the article has reviewed the history and the development milestones of ICVs. For the second question, the recent technology advances in electrical/electronic architecture, sensors, and actuators are presented. For the third question, the article focuses on the algorithms in decision making, as the perception and control algorithm are covered in the development of sensors and actuators. To achieve correct decision-making, there exist two different approaches: the principle-based approach and data-driven approach. The advantages and limitations of both approaches are explained and analyzed. Currently automotive engineers are concerned more with the vehicle platform technology, whereas the academic researchers prefer to focus on theoretical algorithms. However, only by incorporating elements from both worlds can we accelerate the production of high-level ICVs.
文摘Enzymeless hydrogen peroxide (H2O2) detection with high sensitivity and excellent selectivity is desirable for clinical diagnosis. Herein, one-dimensional Co3O4 nanowires have been successfully constructed on reduced graphene oxide (rGO) via a simple hydrothermal procedure and subsequent thermal treatment. These Co3O4 nanowires, assembled by small nanoparticles, are interlaced with one another and make a spider web-like structure on rGO. The formation of Co3O4-rGO hybrids is attributed to the structure-directing and anchoring roles of DDA and GO, respectively. The resulting structure possesses abundant active sites, the oriented transmission of electrons, and unimpeded pathways for matter diffusion, which endows the Co3O4-rGO hybrids with excellent electrocatalytic performance. As a result, the obtained Co3O4-rGO hybrids can serve as an efficient electrochemical catalyst for H2O2 oxidation and high sensitivity detection. Under physiological conditions, the oxidation current of H2O2 varies linearly with respect to its concentration from 0.015 to 0.675 mM with a sensitivity of 1.14 mA.mM^-1.cm^-2 and a low detection limit of 2.4 μM. Furthermore, the low potential (-0.19 V) and the good selectivity make Co3O4-rGO hybrids suitable for monitoring H2O2 generated by liver cancer HepG2 cells. Therefore, it is promising as a non-enzymatic sensor to achieve real-time quantitative detection of H2O2 in biological applications.