Many chemical processes can be modeled as Wiener models, which consist of a linear dynamic subsystem followed by a static nonlinear block. In this paper, an effective discrete-time adaptive control method is proposed ...Many chemical processes can be modeled as Wiener models, which consist of a linear dynamic subsystem followed by a static nonlinear block. In this paper, an effective discrete-time adaptive control method is proposed for Wiener nonlinear systems with uncertainties. The parameterization model is derived based on the inverse of the nonlinear function block. The adaptive control method is motivated by self-tuning control and is derived from a modified Clarke criterion function, which considers both tracking properties and control efforts. The uncertain parameters are updated by a recursive least squares algorithm and the control law exhibits an explicit form. The closed-loop system stability properties are discussed. To demonstrate the effectiveness of the obtained results, two groups of simulation examples including an application to composition control in a continuously stirred tank reactor(CSTR) system are studied.展开更多
The circle geometric constraint model (CGCM) was put forward for resolving the open-pit mine ore-matching problems (OMOMP). By adopting the approaches of graph theory, block model of blasted piles was abstracted i...The circle geometric constraint model (CGCM) was put forward for resolving the open-pit mine ore-matching problems (OMOMP). By adopting the approaches of graph theory, block model of blasted piles was abstracted into a set of nodes and directed edges, which were connected together with other nodes in the range of circle constraints, to describe the mining sequence. Also, the constructing method of CGCM was introduced in detail. The algorithm of CGCM has been realized in the DIM1NE system, and applied to a short-term (5 d) program calculation for ore-matching of a cement limestone mine in Hebei Province, China. The applications show that CGCM can well describe the mining sequence of ore blocks and its mining geometric constraints in the process of mining blasted piles. This model, which is applicable for resolving OMOMP under complicated geometric constraints with accurate results, provides effective ways to solve the problems of open-pit ore-matching.展开更多
Crystallization is used to produce vast quantities of materials. For several applications, continuous crystallization is often the best operation mode because it is able to reproduce better crystal size distributions ...Crystallization is used to produce vast quantities of materials. For several applications, continuous crystallization is often the best operation mode because it is able to reproduce better crystal size distributions than other operation modes. Nonlinear oscillation in continuous industrial crystallization processes is a well-known phenomenon leading to practical difficulties such that control actions are necessary. Nonlinear oscillation is a consequence of the highly nonlinear kinetics, different feedbacks between the variables and elementary processes taking place in crystallizers units, and the non-equilibrium thermodynamic operation. In this paper the control of a continuous crystallizer model that displays oscillatory behavior is addressed via two practical robust control approaches: (i) modeling error compensation, and (ii) integral high order sliding mode control. The controller designs are based on the reduced-order model representation of the population balance equations resulting after the application of the method of moments. Numerical simulations show good closed-loop performance and robustness properties展开更多
Let (?, ?) be a linear matrix problem induced from a finite dimensional algebra ∧. Then an? ×? matrix M in R(?, ?) is indecomposable if and only if the number of links in the canonical formM (∞) of M is equal t...Let (?, ?) be a linear matrix problem induced from a finite dimensional algebra ∧. Then an? ×? matrix M in R(?, ?) is indecomposable if and only if the number of links in the canonical formM (∞) of M is equal to. ?-dim? ? 1. On the other hand, the dimension of the endomorphism ring of M is equal to ?-dim? ? σ(M).展开更多
基金Supported by the National Natural Science Foundation of China(61473072)
文摘Many chemical processes can be modeled as Wiener models, which consist of a linear dynamic subsystem followed by a static nonlinear block. In this paper, an effective discrete-time adaptive control method is proposed for Wiener nonlinear systems with uncertainties. The parameterization model is derived based on the inverse of the nonlinear function block. The adaptive control method is motivated by self-tuning control and is derived from a modified Clarke criterion function, which considers both tracking properties and control efforts. The uncertain parameters are updated by a recursive least squares algorithm and the control law exhibits an explicit form. The closed-loop system stability properties are discussed. To demonstrate the effectiveness of the obtained results, two groups of simulation examples including an application to composition control in a continuously stirred tank reactor(CSTR) system are studied.
基金Project(2011AA060407) supported by the National High Technology Research and Development Program of ChinaProject(51074073) supported by the National Natural Science Foundation of China
文摘The circle geometric constraint model (CGCM) was put forward for resolving the open-pit mine ore-matching problems (OMOMP). By adopting the approaches of graph theory, block model of blasted piles was abstracted into a set of nodes and directed edges, which were connected together with other nodes in the range of circle constraints, to describe the mining sequence. Also, the constructing method of CGCM was introduced in detail. The algorithm of CGCM has been realized in the DIM1NE system, and applied to a short-term (5 d) program calculation for ore-matching of a cement limestone mine in Hebei Province, China. The applications show that CGCM can well describe the mining sequence of ore blocks and its mining geometric constraints in the process of mining blasted piles. This model, which is applicable for resolving OMOMP under complicated geometric constraints with accurate results, provides effective ways to solve the problems of open-pit ore-matching.
文摘Crystallization is used to produce vast quantities of materials. For several applications, continuous crystallization is often the best operation mode because it is able to reproduce better crystal size distributions than other operation modes. Nonlinear oscillation in continuous industrial crystallization processes is a well-known phenomenon leading to practical difficulties such that control actions are necessary. Nonlinear oscillation is a consequence of the highly nonlinear kinetics, different feedbacks between the variables and elementary processes taking place in crystallizers units, and the non-equilibrium thermodynamic operation. In this paper the control of a continuous crystallizer model that displays oscillatory behavior is addressed via two practical robust control approaches: (i) modeling error compensation, and (ii) integral high order sliding mode control. The controller designs are based on the reduced-order model representation of the population balance equations resulting after the application of the method of moments. Numerical simulations show good closed-loop performance and robustness properties
基金the National Natural Science Foundation of China (Grant No. 19831070) and the Doctoral Foundation of Institution of Higher Education.
文摘Let (?, ?) be a linear matrix problem induced from a finite dimensional algebra ∧. Then an? ×? matrix M in R(?, ?) is indecomposable if and only if the number of links in the canonical formM (∞) of M is equal to. ?-dim? ? 1. On the other hand, the dimension of the endomorphism ring of M is equal to ?-dim? ? σ(M).