An edge colored graph G is rainbow connected if any two vertices are connected by a path whose edges have distinct colors. The rainbow connection number of a graph G, denoted by rc(G), is the smallest number of colors...An edge colored graph G is rainbow connected if any two vertices are connected by a path whose edges have distinct colors. The rainbow connection number of a graph G, denoted by rc(G), is the smallest number of colors that are needed in order to make G rainbow connected. A vertex colored graph G is vertex rainbow connected if any two vertices are connected by a path whose internal vertices have distinct colors. The vertex rainbow connection number of G, denoted by rvc(G), is the smallest number of colors that are needed in order to make G vertex rainbow connected. In 2011, Kemnitz and Schiermeyer considered graphs with rc(G) = 2.We investigate graphs with rvc(G) = 2. First, we prove that rvc(G) 2 if |E(G)|≥n-22 + 2, and the bound is sharp. Denote by s(n, 2) the minimum number such that, for each graph G of order n, we have rvc(G) 2provided |E(G)|≥s(n, 2). It is proved that s(n, 2) = n-22 + 2. Next, we characterize the vertex rainbow connection numbers of graphs G with |V(G)| = n, diam(G)≥3 and clique number ω(G) = n- s for 1≤s≤4.展开更多
基金supported by National Natural Science Foundation of China(Grant Nos.11271267 and 11371204)
文摘An edge colored graph G is rainbow connected if any two vertices are connected by a path whose edges have distinct colors. The rainbow connection number of a graph G, denoted by rc(G), is the smallest number of colors that are needed in order to make G rainbow connected. A vertex colored graph G is vertex rainbow connected if any two vertices are connected by a path whose internal vertices have distinct colors. The vertex rainbow connection number of G, denoted by rvc(G), is the smallest number of colors that are needed in order to make G vertex rainbow connected. In 2011, Kemnitz and Schiermeyer considered graphs with rc(G) = 2.We investigate graphs with rvc(G) = 2. First, we prove that rvc(G) 2 if |E(G)|≥n-22 + 2, and the bound is sharp. Denote by s(n, 2) the minimum number such that, for each graph G of order n, we have rvc(G) 2provided |E(G)|≥s(n, 2). It is proved that s(n, 2) = n-22 + 2. Next, we characterize the vertex rainbow connection numbers of graphs G with |V(G)| = n, diam(G)≥3 and clique number ω(G) = n- s for 1≤s≤4.