The method of matrix continued fraction is used to investigate stochastic resonance (SR) in the biasedsubdiffusive Smoluchowski system within linear response range.Numerical results of linear dynamic susceptibility an...The method of matrix continued fraction is used to investigate stochastic resonance (SR) in the biasedsubdiffusive Smoluchowski system within linear response range.Numerical results of linear dynamic susceptibility andspectral amplification factor are presented and discussed in two-well potential and mono-well potential with differentsubdiffusion exponents.Following our observation,the introduction of a bias in the potential weakens the SR effect inthe subdiffusive system just as in the normal diffusive case.Our observation also discloses that the subdiffusion inhibitsthe low-frequency SR,but it enhances the high-frequency SR in the biased Smoluchowski system,which should reflect a'flattening' influence of the subdiffusion on the linear susceptibility.展开更多
基金Supported by the National Natural Science Foundation of China under Grant Nos.10602041 and 10972170
文摘The method of matrix continued fraction is used to investigate stochastic resonance (SR) in the biasedsubdiffusive Smoluchowski system within linear response range.Numerical results of linear dynamic susceptibility andspectral amplification factor are presented and discussed in two-well potential and mono-well potential with differentsubdiffusion exponents.Following our observation,the introduction of a bias in the potential weakens the SR effect inthe subdiffusive system just as in the normal diffusive case.Our observation also discloses that the subdiffusion inhibitsthe low-frequency SR,but it enhances the high-frequency SR in the biased Smoluchowski system,which should reflect a'flattening' influence of the subdiffusion on the linear susceptibility.