期刊文献+
共找到11篇文章
< 1 >
每页显示 20 50 100
连续分布函数的最优不变估计
1
作者 宁建辉 李丹 余慧敏 《华中师范大学学报(自然科学版)》 CAS CSCD 2005年第1期13-16,共4页
给定来自一未知连续分布函数F的容量为n的子样,考虑分布函数F的不变估计问题.在损失函数L(F,a)=∫|F(t)-a(t)|rFα(t)(1-F(t))βdF(t),α,β≥-1下,在r=1时得到了F的最优不变估计.从而将结论推广到更一般的情形,且所采用的方法较简洁... 给定来自一未知连续分布函数F的容量为n的子样,考虑分布函数F的不变估计问题.在损失函数L(F,a)=∫|F(t)-a(t)|rFα(t)(1-F(t))βdF(t),α,β≥-1下,在r=1时得到了F的最优不变估计.从而将结论推广到更一般的情形,且所采用的方法较简洁有效. 展开更多
关键词 连续分布函数 不变估计 单调变换群
下载PDF
一种非对称损失下分布函数的最优不变估计 被引量:1
2
作者 余慧敏 《广西科学》 CAS 2007年第4期365-366,共2页
给定来自一未知连续分布函数F的容量为n的子样x1,x2,…,xn,考虑分布函数F的不变估计问题.在非对称损失函数L(F(t),d(t))=b∫(exp{a[d(t)-F(t)]}-a[d(t)-F(t)]-1)dF(t)和单调变换群下得到F的最优不变估计为d(t,X)=∑ni=0ciI(x(i)≤t≤x(i... 给定来自一未知连续分布函数F的容量为n的子样x1,x2,…,xn,考虑分布函数F的不变估计问题.在非对称损失函数L(F(t),d(t))=b∫(exp{a[d(t)-F(t)]}-a[d(t)-F(t)]-1)dF(t)和单调变换群下得到F的最优不变估计为d(t,X)=∑ni=0ciI(x(i)≤t≤x(i+1)),其中ci=1/aln(∫01ti(1-t)n-idt)/(∫01exp{-at}ti(1-t)n-idt),a≠0,b>0. 展开更多
关键词 非对称损失 连续分布函数 不变估计
下载PDF
求二维随机变量函数分布的截图降维法
3
作者 李建峰 李国安 +1 位作者 黄林涛 李晶晶 《高等数学研究》 2015年第1期85-87,共3页
计算二维随机变量函数分布的卷积公式是一个降维公式,通过图形辅助求解,揭示图形中所截的线段实为卷积公式中积分变量的取值范围.以两个实例说明:利用降维公式辅助截图可有效降低计算难度.
关键词 截图降维 二维连续型随机变量函数分布 分段积分
下载PDF
关于二维密度函数的一个反例
4
作者 刘文 《高等数学研究》 2000年第4期36-37,共2页
关键词 二维 连续分布函数 密度函数 连续型随机向量
下载PDF
Some Notes of Property of Distribution Function of Many Variables
5
作者 孔繁超 张曙光 《Chinese Quarterly Journal of Mathematics》 CSCD 1992年第1期60-64,共5页
In this paper we discuss a step further some convergence and continuity problems of distribution function on R^i. We give the following results: (1)distribution function F(x_1,…,x_k) on R^k is continuous if and only ... In this paper we discuss a step further some convergence and continuity problems of distribution function on R^i. We give the following results: (1)distribution function F(x_1,…,x_k) on R^k is continuous if and only if all marginal distribution functions of F is continuous on R^1. (2)If limF_n(x_1,……,x_k)=F(x_1,…,x_k) and limF_n(x_1—0,…,x_k—0)=F(x_1—0,…,x_k—0) at all non-continuity points of F, then 展开更多
关键词 probability space distribution function
下载PDF
概率论中几个问题的进一步探讨
6
作者 杨海岳 《河北民族师范学院学报》 1994年第S2期119-121,共3页
概率论中几个问题的进一步探讨杨海岳在概率论的教学实践中国我对概率中的几个问题做了进一步的探讨,现将它们总结如下。1在概率论中,两个随机变量独上则一定不相关,反之却不一定成立。只有在二维正态分布情况下,不相关与独立才是... 概率论中几个问题的进一步探讨杨海岳在概率论的教学实践中国我对概率中的几个问题做了进一步的探讨,现将它们总结如下。1在概率论中,两个随机变量独上则一定不相关,反之却不一定成立。只有在二维正态分布情况下,不相关与独立才是充要条件。那么,还有没有其它情况呢... 展开更多
关键词 概率论 随机变量的函数 几个问题 连续分布函数 均匀分布 充要条 两点分布 事件的概率 等可能性 试验中
下载PDF
螺旋压缩弹簧强度的模糊可靠度设计
7
作者 李业农 《南通职业大学学报》 2000年第3期27-30,共4页
本文对螺旋压缩型弹簧的强度为模糊变量、应力为随机变量的情况 ,提出了模糊可靠的设计方法 。
关键词 螺旋压缩弹簧 强度 模糊可靠度 应力 连续型隶属函数 连续型正态分布密度函数
下载PDF
The Roughness of Model Function to the Basis Functions 被引量:1
8
作者 To Van Ban Nguyen Thi Quyen Phan Thu Ha 《Journal of Mathematics and System Science》 2013年第8期385-390,共6页
The roughness of the model function f(x) to the basis functions has been identified. When the model function is continuous segment, its roughness does not depend on the behavior of the first segment, but depends on ... The roughness of the model function f(x) to the basis functions has been identified. When the model function is continuous segment, its roughness does not depend on the behavior of the first segment, but depends on "h", the shift in the slope of two consecutive segments. If the distribution of design is uniform, f(x) is continuous segment function, and h is constant, then the maximum roughness is h2/192 obtained at the midpoint of the observations. Suppose that we have a sequence of designs {Pn(x)} then its corresponding distribution {Fn (x)} converges weakly to some distribution F(x). Let D(f) be a set of discontinuous points off(x), it is possible to take the limit of the roughness if D(f) has zero (dF)-measure. The behavior of maximum roughness of the discontinuous segment function has been studied by using grid points. 展开更多
关键词 The roughness segment function model function DESIGN converge.
下载PDF
Moment bounds for IID sequences under sublinear expectations 被引量:6
9
作者 HU Feng1,2 1Department of Mathematics,Qufu Normal University,Qufu 273165,China 2School of Mathematics,Shandong University,Jinan 250100,China 《Science China Mathematics》 SCIE 2011年第10期2155-2160,共6页
With the notion of independent identically distributed(IID) random variables under sublinear expectations introduced by Peng,we investigate moment bounds for IID sequences under sublinear expectations. We obtain a mom... With the notion of independent identically distributed(IID) random variables under sublinear expectations introduced by Peng,we investigate moment bounds for IID sequences under sublinear expectations. We obtain a moment inequality for a sequence of IID random variables under sublinear expectations. As an application of this inequality,we get the following result:For any continuous functionsatisfying the growth condition |(x) | C(1 + |x|p) for some C > 0,p 1 depending on ,the central limit theorem under sublinear expectations obtained by Peng still holds. 展开更多
关键词 moment bound sublinear expectation IID random variables G-normal distribution central limit theorem
原文传递
MINIMAX INVARIANT ESTIMATOR OF CONTINUOUS DISTRIBUTION FUNCTION UNDER LINEX LOSS
10
作者 Jianhui NING Minyu XIE 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2007年第1期119-126,共8页
In this paper we consider the problem of estimation of a continuous distribution function under the LINEX loss function. The best invariant estimator is obtained and proved to be minimax for any sample size n ≥ 1.
关键词 Invariant estimator LINEX loss function non-parametric estimation.
原文传递
Products of Distributions,Conservation Laws and the Propagation of δ'-Shock Waves
11
作者 Carlos Orlando R. SARRICO 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2012年第3期367-384,共18页
This paper contains a study of propagation of singular travelling waves u(x, t) for conservation laws ut + [Ф(u)]x = ψ(u), where Ф, ψ are entire functions taking real values on the real axis. Conditions for... This paper contains a study of propagation of singular travelling waves u(x, t) for conservation laws ut + [Ф(u)]x = ψ(u), where Ф, ψ are entire functions taking real values on the real axis. Conditions for the propagation of wave profiles β + mδ and β + mδt are presented (β is a real continuous function, m ≠ 0 is a real number and δ' is the derivative of the Dirac measure 5). These results are obtained with a consistent concept of solution based on our theory of distributional products. Burgers equation ut + (u2/2)x = 0, the iffusionless Burgers-Fischer equation ut + a(u2/2)x = ru(1 - u/k) with a, r, k being positive numbers, Leveque and Yee equation ut + ux = μx(1 - u)(u - u/k) with μ ≠ 0, and some other examples are studied within such a setting. A "tool box" survey of the distributional products is also included for the sake of completeness. 展开更多
关键词 Conservations laws Travelling waves δ^-shock waves δ-shock waves δ-solitons Propagation of distributional wave profiles
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部