The mass of high-speed trains can be reduced using the brake disk prepared with SiC network ceramic frame reinforced 6061 aluminum alloy composite (SiCn/Al). The thermal and stress analyses of SiCn/Al brake disk dur...The mass of high-speed trains can be reduced using the brake disk prepared with SiC network ceramic frame reinforced 6061 aluminum alloy composite (SiCn/Al). The thermal and stress analyses of SiCn/Al brake disk during emergency braking at a speed of 300 km/h considering airflow cooling were investigated using finite element (FE) and computational fluid dynamics (CFD) methods. All three modes of heat transfer (conduction, convection and radiation) were analyzed along with the design features of the brake assembly and their interfaces. The results suggested that the higher convection coefficients achieved with airflow cooling will not only reduce the maximum temperature in the braking but also reduce the thermal gradients, since heat will be removed faster from hotter parts of the disk. Airflow cooling should be effective to reduce the risk of hot spot formation and disc thermal distortion. The highest temperature after emergency braking was 461 °C and 359 °C without and with considering airflow cooling, respectively. The equivalent stress could reach 269 MPa and 164 MPa without and with considering airflow cooling, respectively. However, the maximum surface stress may exceed the material yield strength during an emergency braking, which may cause a plastic damage accumulation in a brake disk without cooling. The simulation results are consistent with the experimental results well.展开更多
As an orientation measurement system,north-finder has been playing a significant role in both military and civilian fields of orientation and control.In this paper,to deal with drawbacks in the conventional north-find...As an orientation measurement system,north-finder has been playing a significant role in both military and civilian fields of orientation and control.In this paper,to deal with drawbacks in the conventional north-finding systems,a dynamic strategy based on continuous rotation modulation to measure the rotational angular velocity of the earth is proposed.By modeling the dynamic error,optimizing the process constraint and estimating dynamic noise,a method combining delay compensation and hardware adjustment,and a constrained adaptive Kalman filter(CAKF)algorithm are designed for the north-finding strategy.According to simulation and experiments,the proposed algorithm can achieve the high-precision north-finding with robust and anti-noise performance.展开更多
A fatigue damage model based on thermodynamics was deduced for asphalt mixtures under controlled-stress and controlled-strain modes. By employing modulus of resilience as the damage hardening variable, a damage variab...A fatigue damage model based on thermodynamics was deduced for asphalt mixtures under controlled-stress and controlled-strain modes. By employing modulus of resilience as the damage hardening variable, a damage variable related with dynamic modulus was extracted as the evaluation index. Then, the damage evolution law under two control modes was proposed, and it has a similar form to the Chaboche fatigue model with a nonnegative material parameter m related to its loading level. Experimental data of four loading levels were employed to calibrate the model and identify the parameter in both control modes. It is found that the parameter m shows an exponential relationship with its loading level. Besides, the difference of damage evolution under two control modes was explained by the law. The damage evolves from fast to slow under a controlled-strain mode. However, under a controlled-stress mode, the evolution rate is just the opposite. By using the damage equivalence principle to calculate the equivalent cycle numbers, the deduced model also interprets the difference of damage evolution under two control modes on the condition of multilevel loading. Under a controlled-strain mode, a loading sequence from a low level to a high level accelerates damage evolution. An inverse order under the controlled-stress mode can prolong fatigue life.展开更多
In order to study the dynamic characteristics of automobile with a CVT system, a bond graph analysis model of continuously variable transmission is established. On the base of the simulation state space equations that...In order to study the dynamic characteristics of automobile with a CVT system, a bond graph analysis model of continuously variable transmission is established. On the base of the simulation state space equations that are established with bond graph theory, a fuzzy control strategy with an expert system of starting process has been introduced. Considering uncertain system parameters and exterior resistance disturbing , the effect of the profile of membership function and the defuzzification algorithm on the capacity of the fuzzy controller has been studied. The result of simulation proves that the proposed fuzzy controller is effective and feasible. Such controller has been employed in the actual control and has proved practicable. The study lays a foundation for design of the fuzzy controller for automobile with a CVT system.展开更多
Regenerative braking was the process of converting the kinetic energy and potential energy, which were stored in the vehicle body when vehicle braked or went downhill, into electrical energy and storing it into batter...Regenerative braking was the process of converting the kinetic energy and potential energy, which were stored in the vehicle body when vehicle braked or went downhill, into electrical energy and storing it into battery. The problem on how to distribute braking forces of front wheel and rear wheel for electric vehicles with four-wheel drive was more complex than that for electric vehicles with front-wheel drive or rear-wheel drive. In this work, the frictional braking forces distribution curve of front wheel and rear wheel is determined by optimizing the braking force distribution curve of hydraulic proportional-adjustable valve, and then the safety brake range is obtained correspondingly. A new braking force distribution strategy based on regenerative braking strength continuity is proposed to solve the braking force distribution problem for electric vehicles with four-wheel drive. Highway fuel economy test(HWFET) driving condition is used to provide the speed signals, the braking force equations of front wheel and rear wheel are expressed with linear equations. The feasibility, effectiveness, and practicality of the new braking force distribution strategy based on regenerative braking strength continuity are verified by regenerative braking strength simulation curve and braking force distribution simulation curves of front wheel and rear wheel. The proposed strategy is simple in structure, easy to be implemented and worthy being spread.展开更多
Because of its light weight, broadband, and adaptable properties, smart material has been widely applied in the active vibration control (AVC) of flexible structures. Based on a firstorder shear deformation theory, ...Because of its light weight, broadband, and adaptable properties, smart material has been widely applied in the active vibration control (AVC) of flexible structures. Based on a firstorder shear deformation theory, by coupling the electrical and mechanical operation, a 4-node quadrilateral piezoelectric composite element with 24 degrees of freedom for generalized displacements and one electrical potential degree of freedom per piezoelectric layer was derived. Dynamic characteristics of a beam with discontinuously distributed piezoelectric sensors and actuators were presented. A linear quadratic regulator (LQR) feedback controller was designed to suppress the vibration of the beam in the state space using the high precise direct (HPD) integration method.展开更多
基金Projects (50872018, 50902018) supported by the National Natural Science Foundation of ChinaProject (1099043) supported by the Science and Technology in Guangxi Province, ChinaProject (090302005) supported by the Basic Research Fund for Northeastern University, China
文摘The mass of high-speed trains can be reduced using the brake disk prepared with SiC network ceramic frame reinforced 6061 aluminum alloy composite (SiCn/Al). The thermal and stress analyses of SiCn/Al brake disk during emergency braking at a speed of 300 km/h considering airflow cooling were investigated using finite element (FE) and computational fluid dynamics (CFD) methods. All three modes of heat transfer (conduction, convection and radiation) were analyzed along with the design features of the brake assembly and their interfaces. The results suggested that the higher convection coefficients achieved with airflow cooling will not only reduce the maximum temperature in the braking but also reduce the thermal gradients, since heat will be removed faster from hotter parts of the disk. Airflow cooling should be effective to reduce the risk of hot spot formation and disc thermal distortion. The highest temperature after emergency braking was 461 °C and 359 °C without and with considering airflow cooling, respectively. The equivalent stress could reach 269 MPa and 164 MPa without and with considering airflow cooling, respectively. However, the maximum surface stress may exceed the material yield strength during an emergency braking, which may cause a plastic damage accumulation in a brake disk without cooling. The simulation results are consistent with the experimental results well.
基金National Natural Science Foundation of China(No.61733012)。
文摘As an orientation measurement system,north-finder has been playing a significant role in both military and civilian fields of orientation and control.In this paper,to deal with drawbacks in the conventional north-finding systems,a dynamic strategy based on continuous rotation modulation to measure the rotational angular velocity of the earth is proposed.By modeling the dynamic error,optimizing the process constraint and estimating dynamic noise,a method combining delay compensation and hardware adjustment,and a constrained adaptive Kalman filter(CAKF)algorithm are designed for the north-finding strategy.According to simulation and experiments,the proposed algorithm can achieve the high-precision north-finding with robust and anti-noise performance.
基金The Open Fund Project of National Key Laboratory of High Performance Civil Engineering Materials(No.2016CEM001)
文摘A fatigue damage model based on thermodynamics was deduced for asphalt mixtures under controlled-stress and controlled-strain modes. By employing modulus of resilience as the damage hardening variable, a damage variable related with dynamic modulus was extracted as the evaluation index. Then, the damage evolution law under two control modes was proposed, and it has a similar form to the Chaboche fatigue model with a nonnegative material parameter m related to its loading level. Experimental data of four loading levels were employed to calibrate the model and identify the parameter in both control modes. It is found that the parameter m shows an exponential relationship with its loading level. Besides, the difference of damage evolution under two control modes was explained by the law. The damage evolves from fast to slow under a controlled-strain mode. However, under a controlled-stress mode, the evolution rate is just the opposite. By using the damage equivalence principle to calculate the equivalent cycle numbers, the deduced model also interprets the difference of damage evolution under two control modes on the condition of multilevel loading. Under a controlled-strain mode, a loading sequence from a low level to a high level accelerates damage evolution. An inverse order under the controlled-stress mode can prolong fatigue life.
基金Funded by the Ford-NSFC Foundation of China (No.50122151).
文摘In order to study the dynamic characteristics of automobile with a CVT system, a bond graph analysis model of continuously variable transmission is established. On the base of the simulation state space equations that are established with bond graph theory, a fuzzy control strategy with an expert system of starting process has been introduced. Considering uncertain system parameters and exterior resistance disturbing , the effect of the profile of membership function and the defuzzification algorithm on the capacity of the fuzzy controller has been studied. The result of simulation proves that the proposed fuzzy controller is effective and feasible. Such controller has been employed in the actual control and has proved practicable. The study lays a foundation for design of the fuzzy controller for automobile with a CVT system.
基金Project(JS-102)supported by the National Key Science and Technological Program of China for Electric VehiclesProject supported by Jilin University "985 Project" Engineering Bionic Technology Innovation Platform,China
文摘Regenerative braking was the process of converting the kinetic energy and potential energy, which were stored in the vehicle body when vehicle braked or went downhill, into electrical energy and storing it into battery. The problem on how to distribute braking forces of front wheel and rear wheel for electric vehicles with four-wheel drive was more complex than that for electric vehicles with front-wheel drive or rear-wheel drive. In this work, the frictional braking forces distribution curve of front wheel and rear wheel is determined by optimizing the braking force distribution curve of hydraulic proportional-adjustable valve, and then the safety brake range is obtained correspondingly. A new braking force distribution strategy based on regenerative braking strength continuity is proposed to solve the braking force distribution problem for electric vehicles with four-wheel drive. Highway fuel economy test(HWFET) driving condition is used to provide the speed signals, the braking force equations of front wheel and rear wheel are expressed with linear equations. The feasibility, effectiveness, and practicality of the new braking force distribution strategy based on regenerative braking strength continuity are verified by regenerative braking strength simulation curve and braking force distribution simulation curves of front wheel and rear wheel. The proposed strategy is simple in structure, easy to be implemented and worthy being spread.
基金Supported by the National Natural Science Foundation of China (51079027).
文摘Because of its light weight, broadband, and adaptable properties, smart material has been widely applied in the active vibration control (AVC) of flexible structures. Based on a firstorder shear deformation theory, by coupling the electrical and mechanical operation, a 4-node quadrilateral piezoelectric composite element with 24 degrees of freedom for generalized displacements and one electrical potential degree of freedom per piezoelectric layer was derived. Dynamic characteristics of a beam with discontinuously distributed piezoelectric sensors and actuators were presented. A linear quadratic regulator (LQR) feedback controller was designed to suppress the vibration of the beam in the state space using the high precise direct (HPD) integration method.