The aim of this paper is to study synchronization control for a class of chaotic systems whose nonlinear components are subject to Lipschitz condition.By using Lyapunov function and linear matrix inequality technique,...The aim of this paper is to study synchronization control for a class of chaotic systems whose nonlinear components are subject to Lipschitz condition.By using Lyapunov function and linear matrix inequality technique,a self-adaptive synchronization controller is constructed for the class of chaotic systems.Numerical simulations of Chen chaotic systems show the effectiveness of the method.Furthermore,this method can be applied to other chaotic systems,such as Lorenz system,Chua system and R?ssler system,et al.展开更多
将连续时间混沌系统的控制与同步问题统一处理 ,在系统的非线性是 L ipschitz非线性的条件下 ,基于 L yapunov稳定性理论 ,提出一种实现连续时间混沌系统控制与同步的状态反馈方法。无论驱动系统处于何种状态 ,该方法都可使响应系统按...将连续时间混沌系统的控制与同步问题统一处理 ,在系统的非线性是 L ipschitz非线性的条件下 ,基于 L yapunov稳定性理论 ,提出一种实现连续时间混沌系统控制与同步的状态反馈方法。无论驱动系统处于何种状态 ,该方法都可使响应系统按照驱动系统给定的轨道演化。该方法对系统参数不匹配及噪声干扰具有一定的鲁棒性。数值仿真结果表明了所提出方法的有效性。展开更多
文摘The aim of this paper is to study synchronization control for a class of chaotic systems whose nonlinear components are subject to Lipschitz condition.By using Lyapunov function and linear matrix inequality technique,a self-adaptive synchronization controller is constructed for the class of chaotic systems.Numerical simulations of Chen chaotic systems show the effectiveness of the method.Furthermore,this method can be applied to other chaotic systems,such as Lorenz system,Chua system and R?ssler system,et al.
文摘将连续时间混沌系统的控制与同步问题统一处理 ,在系统的非线性是 L ipschitz非线性的条件下 ,基于 L yapunov稳定性理论 ,提出一种实现连续时间混沌系统控制与同步的状态反馈方法。无论驱动系统处于何种状态 ,该方法都可使响应系统按照驱动系统给定的轨道演化。该方法对系统参数不匹配及噪声干扰具有一定的鲁棒性。数值仿真结果表明了所提出方法的有效性。