In this paper, we obtain the necessary and sufficient condition of the pre-compact sets in the variable exponent Lebesgue spaces, which is also called the Riesz-Kolmogorov theorem. The main novelty appearing in this a...In this paper, we obtain the necessary and sufficient condition of the pre-compact sets in the variable exponent Lebesgue spaces, which is also called the Riesz-Kolmogorov theorem. The main novelty appearing in this approach is the constructive approximation which does not rely on the boundedness of the Hardy-Littlewood maximal operator in the considered spaces such that we do not need the log-H¨older continuous conditions on the variable exponent. As applications, we establish the boundedness of Riemann-Liouville integral operators and prove the compactness of truncated Riemann-Liouville integral operators in the variable exponent Lebesgue spaces. Moreover, applying the Riesz-Kolmogorov theorem established in this paper, we obtain the existence and the uniqueness of solutions to a Cauchy type problem for fractional differential equations in variable exponent Lebesgue spaces.展开更多
This paper studies a distributed robust resource allocation problem with nonsmooth objective functions under polyhedral uncertain allocation parameters. In the considered distributed robust resource allocation problem...This paper studies a distributed robust resource allocation problem with nonsmooth objective functions under polyhedral uncertain allocation parameters. In the considered distributed robust resource allocation problem, the(nonsmooth) objective function is a sum of local convex objective functions assigned to agents in a multi-agent network. Each agent has a private feasible set and decides a local variable, and all the local variables are coupled with a global affine inequality constraint,which is subject to polyhedral uncertain parameters. With the duality theory of convex optimization,the authors derive a robust counterpart of the robust resource allocation problem. Based on the robust counterpart, the authors propose a novel distributed continuous-time algorithm, in which each agent only knows its local objective function, local uncertainty parameter, local constraint set, and its neighbors' information. Using the stability theory of differential inclusions, the authors show that the algorithm is able to find the optimal solution under some mild conditions. Finally, the authors give an example to illustrate the efficacy of the proposed algorithm.展开更多
This paper is focused on formability of multi-agent systems (MASs). The problem is concerned with the existence of a protocol that has the ability to drive the MAS involved to the desired formation, and thus, is of ...This paper is focused on formability of multi-agent systems (MASs). The problem is concerned with the existence of a protocol that has the ability to drive the MAS involved to the desired formation, and thus, is of essential importance in designing formation protocols. Formability of an MAS depends on several key factors: agents' dynamic structures, connectivity topology, properties of the desired formation and the admissible control set. Agents of the MASs considered here are described by a general continuous linear time-invariant (LTI) model. By using the matrix analysis and algebraic graph theory, some necessary and sufficient conditions on formability of LTI-MASs are obtained. These conditions characterize in some sense the relationship of formability, connectivity topology, formation properties and agent dynamics with respect to some typical and widely used admissible protocol sets.展开更多
基金supported by the Startup Foundation for Introducing Talent of Nanjing University of Information Science and Technology(Grant No.2017r098)Zunwei Fu was supported by National Natural Science Foundation of China(Grant Nos.11671185 and 11771195)+1 种基金National Science Foundation of Shandong Province(Grant No.ZR2017MA041)Jingshi Xu was supported by National Natural Science Foundation of China(Grant No.11761026)
文摘In this paper, we obtain the necessary and sufficient condition of the pre-compact sets in the variable exponent Lebesgue spaces, which is also called the Riesz-Kolmogorov theorem. The main novelty appearing in this approach is the constructive approximation which does not rely on the boundedness of the Hardy-Littlewood maximal operator in the considered spaces such that we do not need the log-H¨older continuous conditions on the variable exponent. As applications, we establish the boundedness of Riemann-Liouville integral operators and prove the compactness of truncated Riemann-Liouville integral operators in the variable exponent Lebesgue spaces. Moreover, applying the Riesz-Kolmogorov theorem established in this paper, we obtain the existence and the uniqueness of solutions to a Cauchy type problem for fractional differential equations in variable exponent Lebesgue spaces.
基金supported by the National Key Research and Development Program of China under Grant No.2016YFB0901902the National Natural Science Foundation of China under Grant Nos.61573344,61603378,61621063,and 61781340258+1 种基金Beijing Natural Science Foundation under Grant No.4152057Projects of Major International(Regional)Joint Research Program NSFC under Grant No.61720106011
文摘This paper studies a distributed robust resource allocation problem with nonsmooth objective functions under polyhedral uncertain allocation parameters. In the considered distributed robust resource allocation problem, the(nonsmooth) objective function is a sum of local convex objective functions assigned to agents in a multi-agent network. Each agent has a private feasible set and decides a local variable, and all the local variables are coupled with a global affine inequality constraint,which is subject to polyhedral uncertain parameters. With the duality theory of convex optimization,the authors derive a robust counterpart of the robust resource allocation problem. Based on the robust counterpart, the authors propose a novel distributed continuous-time algorithm, in which each agent only knows its local objective function, local uncertainty parameter, local constraint set, and its neighbors' information. Using the stability theory of differential inclusions, the authors show that the algorithm is able to find the optimal solution under some mild conditions. Finally, the authors give an example to illustrate the efficacy of the proposed algorithm.
基金supported by the National Nature Science Foundation of China under Grants Nos.60934006 and 61104136the Shandong Provincial Natural Science Foundation under Grant No.ZR2010FQ002+1 种基金the School Foundation of Qufu Normal University under Grant No.XJ200913the Scientific Research Foundation of Qufu Normal University
文摘This paper is focused on formability of multi-agent systems (MASs). The problem is concerned with the existence of a protocol that has the ability to drive the MAS involved to the desired formation, and thus, is of essential importance in designing formation protocols. Formability of an MAS depends on several key factors: agents' dynamic structures, connectivity topology, properties of the desired formation and the admissible control set. Agents of the MASs considered here are described by a general continuous linear time-invariant (LTI) model. By using the matrix analysis and algebraic graph theory, some necessary and sufficient conditions on formability of LTI-MASs are obtained. These conditions characterize in some sense the relationship of formability, connectivity topology, formation properties and agent dynamics with respect to some typical and widely used admissible protocol sets.