A non-linear continuum damage model was presented based on the irreversible thermodynamics framework developed by LEMAITRE and CHABOCHE. The proposed model was formulated by taking into account the influence of loadin...A non-linear continuum damage model was presented based on the irreversible thermodynamics framework developed by LEMAITRE and CHABOCHE. The proposed model was formulated by taking into account the influence of loading frequency on fatigue life. The parameters H and c are constants for frequency-independent materials, but functions of cyclic frequency for frequency-dependent materials. In addition, the expression of the model was discussed in detail at different stress ratios (R). Fatigue test data of AlZnMgCu1.5 aluminium alloy and AMg6N alloy were used to verify the proposed model. The results showed that the model possesses a good ability of predicting fatigue life at different loading frequencies and stress ratios.展开更多
A fatigue damage model based on thermodynamics was deduced for asphalt mixtures under controlled-stress and controlled-strain modes. By employing modulus of resilience as the damage hardening variable, a damage variab...A fatigue damage model based on thermodynamics was deduced for asphalt mixtures under controlled-stress and controlled-strain modes. By employing modulus of resilience as the damage hardening variable, a damage variable related with dynamic modulus was extracted as the evaluation index. Then, the damage evolution law under two control modes was proposed, and it has a similar form to the Chaboche fatigue model with a nonnegative material parameter m related to its loading level. Experimental data of four loading levels were employed to calibrate the model and identify the parameter in both control modes. It is found that the parameter m shows an exponential relationship with its loading level. Besides, the difference of damage evolution under two control modes was explained by the law. The damage evolves from fast to slow under a controlled-strain mode. However, under a controlled-stress mode, the evolution rate is just the opposite. By using the damage equivalence principle to calculate the equivalent cycle numbers, the deduced model also interprets the difference of damage evolution under two control modes on the condition of multilevel loading. Under a controlled-strain mode, a loading sequence from a low level to a high level accelerates damage evolution. An inverse order under the controlled-stress mode can prolong fatigue life.展开更多
Based on the method of strain mode, damage identification of continuous beam bridges by comparing the variance of several curves of strain modes difference is studied. Three cases of numerical simulation demonstrate t...Based on the method of strain mode, damage identification of continuous beam bridges by comparing the variance of several curves of strain modes difference is studied. Three cases of numerical simulation demonstrate that the proposed method is applicable to detecting many a damage in a continuous beam bridge, which accurately identifies the damaged positions of the bridge, and detects the damage severity of an element by its according peak value of the curve of strain modes difference that is found to increase with the increasing damage severity.展开更多
Based on the nonlinear continuum damage model (CDM) developed by Chaboehe, a modified model for high cycle fatigue of TC4 alloy was proposed. Unsymmetrical cycle fatigue tests were conducted on rod specimens at room...Based on the nonlinear continuum damage model (CDM) developed by Chaboehe, a modified model for high cycle fatigue of TC4 alloy was proposed. Unsymmetrical cycle fatigue tests were conducted on rod specimens at room temperature. Then the material parameters needed in the CDM were obtained by the fatigue tests, and the stress distribution of the specimen was calculated by FE method. Compared with the linear damage model (LDM), the dam- age results and the life prediction of the CDM show a better agreement with the test and they are more precise than the LDM. By applying the CDM developed in this study to the life prediction of aeroengine blades, it is concluded that the root is the most dangerous region of the whole blade and the shortest life is 58 211 cycles. Finally, the Cox propor- tional hazard model of survival analysis was applied to the analysis of the fatigue reliability. The Cox model takes the covariates into consideration, which include diameter, weight, mean stress and tensile strength. The result shows that the mean stress is the only factor that accelerates the fracture process.展开更多
文摘A non-linear continuum damage model was presented based on the irreversible thermodynamics framework developed by LEMAITRE and CHABOCHE. The proposed model was formulated by taking into account the influence of loading frequency on fatigue life. The parameters H and c are constants for frequency-independent materials, but functions of cyclic frequency for frequency-dependent materials. In addition, the expression of the model was discussed in detail at different stress ratios (R). Fatigue test data of AlZnMgCu1.5 aluminium alloy and AMg6N alloy were used to verify the proposed model. The results showed that the model possesses a good ability of predicting fatigue life at different loading frequencies and stress ratios.
基金The Open Fund Project of National Key Laboratory of High Performance Civil Engineering Materials(No.2016CEM001)
文摘A fatigue damage model based on thermodynamics was deduced for asphalt mixtures under controlled-stress and controlled-strain modes. By employing modulus of resilience as the damage hardening variable, a damage variable related with dynamic modulus was extracted as the evaluation index. Then, the damage evolution law under two control modes was proposed, and it has a similar form to the Chaboche fatigue model with a nonnegative material parameter m related to its loading level. Experimental data of four loading levels were employed to calibrate the model and identify the parameter in both control modes. It is found that the parameter m shows an exponential relationship with its loading level. Besides, the difference of damage evolution under two control modes was explained by the law. The damage evolves from fast to slow under a controlled-strain mode. However, under a controlled-stress mode, the evolution rate is just the opposite. By using the damage equivalence principle to calculate the equivalent cycle numbers, the deduced model also interprets the difference of damage evolution under two control modes on the condition of multilevel loading. Under a controlled-strain mode, a loading sequence from a low level to a high level accelerates damage evolution. An inverse order under the controlled-stress mode can prolong fatigue life.
文摘Based on the method of strain mode, damage identification of continuous beam bridges by comparing the variance of several curves of strain modes difference is studied. Three cases of numerical simulation demonstrate that the proposed method is applicable to detecting many a damage in a continuous beam bridge, which accurately identifies the damaged positions of the bridge, and detects the damage severity of an element by its according peak value of the curve of strain modes difference that is found to increase with the increasing damage severity.
基金Supported by National Natural Science Foundation of China(No.60879002)Key Technologies R and D Program of Tianjin (No.10ZCKFGX03800)
文摘Based on the nonlinear continuum damage model (CDM) developed by Chaboehe, a modified model for high cycle fatigue of TC4 alloy was proposed. Unsymmetrical cycle fatigue tests were conducted on rod specimens at room temperature. Then the material parameters needed in the CDM were obtained by the fatigue tests, and the stress distribution of the specimen was calculated by FE method. Compared with the linear damage model (LDM), the dam- age results and the life prediction of the CDM show a better agreement with the test and they are more precise than the LDM. By applying the CDM developed in this study to the life prediction of aeroengine blades, it is concluded that the root is the most dangerous region of the whole blade and the shortest life is 58 211 cycles. Finally, the Cox propor- tional hazard model of survival analysis was applied to the analysis of the fatigue reliability. The Cox model takes the covariates into consideration, which include diameter, weight, mean stress and tensile strength. The result shows that the mean stress is the only factor that accelerates the fracture process.