随着航空航天等领域对材料性能要求的日益提高,陶瓷基复合材料(CMCs)因其卓越的高温稳定性和优异的力学性能而备受关注。然而,CMCs在机械性能与电磁波吸收(EWA)性能之间的平衡一直是一个技术难题。近期,西安交通大学的科研团队在《材料...随着航空航天等领域对材料性能要求的日益提高,陶瓷基复合材料(CMCs)因其卓越的高温稳定性和优异的力学性能而备受关注。然而,CMCs在机械性能与电磁波吸收(EWA)性能之间的平衡一直是一个技术难题。近期,西安交通大学的科研团队在《材料科学与技术杂志(Journal of Materials Science&Technology)》上发表了一篇关于仿竹结构的连续碳纤维增强SiC(Cf/SiC)复合材料的研究成果,为CMCs的应用提供了新的思路。展开更多
连续碳纤维增强碳化硅材料除了具有碳化硅材料固有的低中子活化性能,低衰变热性能和低氚渗透性能等优点以外,还具有密度低、线性膨胀系数小、高比强度、高比模量、耐高温、抗氧化、抗蠕变、抗热震、耐化学腐蚀、耐盐雾、优良的电磁波吸...连续碳纤维增强碳化硅材料除了具有碳化硅材料固有的低中子活化性能,低衰变热性能和低氚渗透性能等优点以外,还具有密度低、线性膨胀系数小、高比强度、高比模量、耐高温、抗氧化、抗蠕变、抗热震、耐化学腐蚀、耐盐雾、优良的电磁波吸收特性等一系列优异性能,是各类核工程重要的潜在候选材料。在核聚变工程应用领域,连续碳纤维增强碳化硅材料作为第一壁材料不可避免地会受到各种辐射粒子的影响。研究清楚这些辐射粒子对它的辐照效应对其在核工程领域的安全使用至关重要。采用蒙特卡罗方法与分子动力学方法进行模拟计算,研究了氕、氘、氚和氦四种粒子对连续碳纤维增强碳化硅的辐照效应。SRIM和LAMMPS计算结果表明:当入射原子能量为100 e V,连续碳纤维增强碳化硅中碳的浓度在80%~85%时,氕、氘、氚和氦原子的溅射率存在最小值;入射粒子的种类对溅射率的影响显著,氦原子的溅射率大于氘原子和氚原子,而氘原子和氚原子的溅射率相差不大但均显著大于氕原子;溅射率随入射能量的增加先迅速增加后逐渐减小,氕、氘、氚和氦原子入射能量分别在200,400,600和800 e V时存在溅射率最大值;当氦原子入射能量为100 e V时,溅射率随入射角度的增加而逐渐减少。这些结果对连续碳纤维增强碳化硅材料在核工程上的应用具有一定的参考意义。展开更多
文摘随着航空航天等领域对材料性能要求的日益提高,陶瓷基复合材料(CMCs)因其卓越的高温稳定性和优异的力学性能而备受关注。然而,CMCs在机械性能与电磁波吸收(EWA)性能之间的平衡一直是一个技术难题。近期,西安交通大学的科研团队在《材料科学与技术杂志(Journal of Materials Science&Technology)》上发表了一篇关于仿竹结构的连续碳纤维增强SiC(Cf/SiC)复合材料的研究成果,为CMCs的应用提供了新的思路。
文摘连续碳纤维增强碳化硅材料除了具有碳化硅材料固有的低中子活化性能,低衰变热性能和低氚渗透性能等优点以外,还具有密度低、线性膨胀系数小、高比强度、高比模量、耐高温、抗氧化、抗蠕变、抗热震、耐化学腐蚀、耐盐雾、优良的电磁波吸收特性等一系列优异性能,是各类核工程重要的潜在候选材料。在核聚变工程应用领域,连续碳纤维增强碳化硅材料作为第一壁材料不可避免地会受到各种辐射粒子的影响。研究清楚这些辐射粒子对它的辐照效应对其在核工程领域的安全使用至关重要。采用蒙特卡罗方法与分子动力学方法进行模拟计算,研究了氕、氘、氚和氦四种粒子对连续碳纤维增强碳化硅的辐照效应。SRIM和LAMMPS计算结果表明:当入射原子能量为100 e V,连续碳纤维增强碳化硅中碳的浓度在80%~85%时,氕、氘、氚和氦原子的溅射率存在最小值;入射粒子的种类对溅射率的影响显著,氦原子的溅射率大于氘原子和氚原子,而氘原子和氚原子的溅射率相差不大但均显著大于氕原子;溅射率随入射能量的增加先迅速增加后逐渐减小,氕、氘、氚和氦原子入射能量分别在200,400,600和800 e V时存在溅射率最大值;当氦原子入射能量为100 e V时,溅射率随入射角度的增加而逐渐减少。这些结果对连续碳纤维增强碳化硅材料在核工程上的应用具有一定的参考意义。