地震勘探中由于采集成本和采集条件等因素导致的地震数据不完整性极大地影响了地震数据的后续处理。为此,引入了一种压缩感知理论下的快速不动点连续(fast fixed point continuation,FFPC)算法对缺失的地震数据进行重建。首先对地震数...地震勘探中由于采集成本和采集条件等因素导致的地震数据不完整性极大地影响了地震数据的后续处理。为此,引入了一种压缩感知理论下的快速不动点连续(fast fixed point continuation,FFPC)算法对缺失的地震数据进行重建。首先对地震数据进行小波变换,然后根据要求选择合适的测量矩阵对地震数据进行缺失处理,最后采用FFPC算法重建缺失后的稀疏地震数据。模型数据及实际地震数据测试结果表明,该算法能够很好地完成地震数据重建,重建后的地震数据具有较高的信噪比。相对于不动点连续(fixed point continuation,FPC)算法,FFPC算法耗时更短、重建效率更高;相对于传统的正交匹配追踪(orthogonal matching pursuit,OMP)以及最小化L1范数的谱投影梯度(spectral projected-gradient for L1minimization,SPGL1)等算法,FFPC算法的重建精度更高。展开更多
文摘地震勘探中由于采集成本和采集条件等因素导致的地震数据不完整性极大地影响了地震数据的后续处理。为此,引入了一种压缩感知理论下的快速不动点连续(fast fixed point continuation,FFPC)算法对缺失的地震数据进行重建。首先对地震数据进行小波变换,然后根据要求选择合适的测量矩阵对地震数据进行缺失处理,最后采用FFPC算法重建缺失后的稀疏地震数据。模型数据及实际地震数据测试结果表明,该算法能够很好地完成地震数据重建,重建后的地震数据具有较高的信噪比。相对于不动点连续(fixed point continuation,FPC)算法,FFPC算法耗时更短、重建效率更高;相对于传统的正交匹配追踪(orthogonal matching pursuit,OMP)以及最小化L1范数的谱投影梯度(spectral projected-gradient for L1minimization,SPGL1)等算法,FFPC算法的重建精度更高。