Consider the following equations:{λx"(t)+f(t,x(t))=0,t≠tiΔλx(ti)=Ii(x(ti)),i=1,2,…,kΔλx(ti)=Li(x(ti)),i=1,2,…,kx'(0)=0=x(1)-αx(η).Where 0 〈 η〈 1,0 〈 α 〈 1, and f : [0,1] ...Consider the following equations:{λx"(t)+f(t,x(t))=0,t≠tiΔλx(ti)=Ii(x(ti)),i=1,2,…,kΔλx(ti)=Li(x(ti)),i=1,2,…,kx'(0)=0=x(1)-αx(η).Where 0 〈 η〈 1,0 〈 α 〈 1, and f : [0,1] × [0, ∞) → [0, ∞), Ii,Li : [0, ∞) → R, (i = 1, 2,…, k) are continuous functions. We prove the existence of eigenvalues for the problem under a weaker condition, moreover we do not require the monotonicity of the impulsive functions.展开更多
基金Supported by the NNSF of China(10371006) Supported by the Youth Teacher Science Research Foundation of Central University of Nationalities(CUN08A)
文摘Consider the following equations:{λx"(t)+f(t,x(t))=0,t≠tiΔλx(ti)=Ii(x(ti)),i=1,2,…,kΔλx(ti)=Li(x(ti)),i=1,2,…,kx'(0)=0=x(1)-αx(η).Where 0 〈 η〈 1,0 〈 α 〈 1, and f : [0,1] × [0, ∞) → [0, ∞), Ii,Li : [0, ∞) → R, (i = 1, 2,…, k) are continuous functions. We prove the existence of eigenvalues for the problem under a weaker condition, moreover we do not require the monotonicity of the impulsive functions.