Studied is the Super-continuum(SC) generation of a normal-dispersion photonic crystal fiber(PCF) using picosecond pulse excitation. In experimental analyses, a 237 nm broadband infrared continuum was generated pumped ...Studied is the Super-continuum(SC) generation of a normal-dispersion photonic crystal fiber(PCF) using picosecond pulse excitation. In experimental analyses, a 237 nm broadband infrared continuum was generated pumped at 1 550 nm(normal dispersion regime) by 1.6 ps pulses from an erbium-doped fiber laser. In addition, we conduct the numerical analyses of SC based on generalized nonlinear Schr dionger equation. The results have been applied to investigate the dominant physical processes underlie the generation of SC. We conclude that dispersion, self-phase modulation(SPM),four-wave-mixing(FWM) and Raman scattering are determinants of SC generation rather than fission of soliton in normal-dispersion PCF.展开更多
The goal in reinforcement learning is to learn the value of state-action pair in order to maximize the total reward. For continuous states and actions in the real world, the representation of value functions is critic...The goal in reinforcement learning is to learn the value of state-action pair in order to maximize the total reward. For continuous states and actions in the real world, the representation of value functions is critical. Furthermore, the samples in value functions are sequentially obtained. Therefore, an online sup-port vector regression (OSVR) is set up, which is a function approximator to estimate value functions in reinforcement learning. OSVR updates the regression function by analyzing the possible variation of sup-port vector sets after new samples are inserted to the training set. To evaluate the OSVR learning ability, it is applied to the mountain-car task. The simulation results indicate that the OSVR has a preferable con- vergence speed and can solve continuous problems that are infeasible using lookup table.展开更多
This paper investigates a consensus design problem for continuous-time first-order multiagent systems with uniform constant communication delay.Provided that the agent dynamic is unstable and the diagraph is undirecte...This paper investigates a consensus design problem for continuous-time first-order multiagent systems with uniform constant communication delay.Provided that the agent dynamic is unstable and the diagraph is undirected,sufficient conditions are derived to guarantee consensus.The key technique is the adoption of historical input information in the protocol.Especially,when agent's own historical input information is used in the protocol design,the consensus condition is constructed in terms of agent dynamic,communication delay,and the eigenratio of the network topology.Simulation result is presented to validate the effectiveness of the theoretical result.展开更多
The developing tendency of continuous-variable (CV) measurement-device-independent (MDI) quantum cryptography is to cope with the practical issue of implementing sealable quantum networks. Up to now, most theoreti...The developing tendency of continuous-variable (CV) measurement-device-independent (MDI) quantum cryptography is to cope with the practical issue of implementing sealable quantum networks. Up to now, most theoretical and experimental researches on CV-MDI QKD are focused on two-party protocols. However, we suggest a CV-MDI multipartite quantum secret sharing (QSS) protocol use the EPR states coupled with optical amplifiers. More remarkable, QSS is the real application in multipartite CV-MDI QKD, in other words, is the concrete implementation method of multipartite CV-MDI QKD. It can implement a practical quantum network scheme, under which the legal participants create the secret correlations by using EPR states connecting to an untrusted relay via insecure links and applying the multi-entangled Greenberger-Horne-Zeilinger (GHZ) state analysis at relay station. Even if there is a possibility that the relay may be completely tampered, the legal participants are still able to extract a secret key from network communication. The numerical simulation indicates that the quantum network communication can be achieved in an asymmetric scenario, fulfilling the demands of a practical quantum network. Additionally, we illustrate that the use of optical amplifiers can compensate the partial inherent imperfections of detectors and increase the transmission distance of the CV-MDI quantum system.展开更多
Recently, the robust output regulation problem for continuous-time linear systems with both input and communication time-delays was studied. This paper will further present the results on the robust output regulation ...Recently, the robust output regulation problem for continuous-time linear systems with both input and communication time-delays was studied. This paper will further present the results on the robust output regulation problem for discrete-time linear systems with input and communication delays. The motivation of this paper comes from two aspects. First, it is known that the solvability of the output regulation problem for linear systems is dictated by two matrix equations. While, for delay-free systems, these two matrix equations are same for both continuous-time systems and discretetime systems, they are different for continuous-time time-delay systems and discrete-time time-delay systems. Second, the stabilization methods for continuous-time time-delay systems and discrete-time time-delay systems are also somehow different. Thus, an independent treatment of the robust output regulation problem for discrete-time time-delay systems will be useful and necessary.展开更多
基金National Natural Science Foundation of China(60578043 , 60378011) Public Construction Foundation ofBeijing City(XK100130637)
文摘Studied is the Super-continuum(SC) generation of a normal-dispersion photonic crystal fiber(PCF) using picosecond pulse excitation. In experimental analyses, a 237 nm broadband infrared continuum was generated pumped at 1 550 nm(normal dispersion regime) by 1.6 ps pulses from an erbium-doped fiber laser. In addition, we conduct the numerical analyses of SC based on generalized nonlinear Schr dionger equation. The results have been applied to investigate the dominant physical processes underlie the generation of SC. We conclude that dispersion, self-phase modulation(SPM),four-wave-mixing(FWM) and Raman scattering are determinants of SC generation rather than fission of soliton in normal-dispersion PCF.
文摘The goal in reinforcement learning is to learn the value of state-action pair in order to maximize the total reward. For continuous states and actions in the real world, the representation of value functions is critical. Furthermore, the samples in value functions are sequentially obtained. Therefore, an online sup-port vector regression (OSVR) is set up, which is a function approximator to estimate value functions in reinforcement learning. OSVR updates the regression function by analyzing the possible variation of sup-port vector sets after new samples are inserted to the training set. To evaluate the OSVR learning ability, it is applied to the mountain-car task. The simulation results indicate that the OSVR has a preferable con- vergence speed and can solve continuous problems that are infeasible using lookup table.
基金supported by the Taishan Scholar Construction Engineering by Shandong Government,the National Natural Science Foundation of China under Grant Nos.61120106011 and 61203029
文摘This paper investigates a consensus design problem for continuous-time first-order multiagent systems with uniform constant communication delay.Provided that the agent dynamic is unstable and the diagraph is undirected,sufficient conditions are derived to guarantee consensus.The key technique is the adoption of historical input information in the protocol.Especially,when agent's own historical input information is used in the protocol design,the consensus condition is constructed in terms of agent dynamic,communication delay,and the eigenratio of the network topology.Simulation result is presented to validate the effectiveness of the theoretical result.
基金Supported by National Natural Science Foundation of China under Grant Nos.61379153,61579725
文摘The developing tendency of continuous-variable (CV) measurement-device-independent (MDI) quantum cryptography is to cope with the practical issue of implementing sealable quantum networks. Up to now, most theoretical and experimental researches on CV-MDI QKD are focused on two-party protocols. However, we suggest a CV-MDI multipartite quantum secret sharing (QSS) protocol use the EPR states coupled with optical amplifiers. More remarkable, QSS is the real application in multipartite CV-MDI QKD, in other words, is the concrete implementation method of multipartite CV-MDI QKD. It can implement a practical quantum network scheme, under which the legal participants create the secret correlations by using EPR states connecting to an untrusted relay via insecure links and applying the multi-entangled Greenberger-Horne-Zeilinger (GHZ) state analysis at relay station. Even if there is a possibility that the relay may be completely tampered, the legal participants are still able to extract a secret key from network communication. The numerical simulation indicates that the quantum network communication can be achieved in an asymmetric scenario, fulfilling the demands of a practical quantum network. Additionally, we illustrate that the use of optical amplifiers can compensate the partial inherent imperfections of detectors and increase the transmission distance of the CV-MDI quantum system.
基金supported by the Research Grants Council of the Hong Kong Special Administration Region under Grant No.412813
文摘Recently, the robust output regulation problem for continuous-time linear systems with both input and communication time-delays was studied. This paper will further present the results on the robust output regulation problem for discrete-time linear systems with input and communication delays. The motivation of this paper comes from two aspects. First, it is known that the solvability of the output regulation problem for linear systems is dictated by two matrix equations. While, for delay-free systems, these two matrix equations are same for both continuous-time systems and discretetime systems, they are different for continuous-time time-delay systems and discrete-time time-delay systems. Second, the stabilization methods for continuous-time time-delay systems and discrete-time time-delay systems are also somehow different. Thus, an independent treatment of the robust output regulation problem for discrete-time time-delay systems will be useful and necessary.