利用广义胞映射方法,研究了加性和乘性泊松白噪声联合作用下SD振子(smooth and discontinuous oscillator)的随机响应问题.基于图分析算法,获得确定SD振子的吸引子、吸引域、域边界、鞍和不变流形等全局特性.基于矩阵分析算法,计算了SD...利用广义胞映射方法,研究了加性和乘性泊松白噪声联合作用下SD振子(smooth and discontinuous oscillator)的随机响应问题.基于图分析算法,获得确定SD振子的吸引子、吸引域、域边界、鞍和不变流形等全局特性.基于矩阵分析算法,计算了SD振子在泊松白噪声激励下的瞬态和稳态响应.结果表明:随机响应的概率密度函数演化方向和确定情况下的不稳定流形形状之间存在密切联系.蒙特卡罗模拟结果表明,所使用的方法是有效且准确的.展开更多
In this paper,we propose a novel nonlinear oscillator with strong irrational nonlinearities having smooth and discontinuous characteristics depending on the values of a smoothness parameter.The oscillator is similar t...In this paper,we propose a novel nonlinear oscillator with strong irrational nonlinearities having smooth and discontinuous characteristics depending on the values of a smoothness parameter.The oscillator is similar to the SD oscillator,originally introduced in Phys Rev E 69(2006).The equilibrium stability and the complex bifurcations of the unperturbed system are investigated.The bifurcation sets of the equilibria in parameter space are constructed to demonstrate transitions in the multiple well dynamics for both smooth and discontinuous regimes.The Melnikov method is employed to obtain the analytical criteria of chaotic thresholds for the singular closed orbits of homoclinic,homo-heteroclinic,cuspidal heteroclinic and tangent homoclinic orbits of the perturbed system.展开更多
文摘利用广义胞映射方法,研究了加性和乘性泊松白噪声联合作用下SD振子(smooth and discontinuous oscillator)的随机响应问题.基于图分析算法,获得确定SD振子的吸引子、吸引域、域边界、鞍和不变流形等全局特性.基于矩阵分析算法,计算了SD振子在泊松白噪声激励下的瞬态和稳态响应.结果表明:随机响应的概率密度函数演化方向和确定情况下的不稳定流形形状之间存在密切联系.蒙特卡罗模拟结果表明,所使用的方法是有效且准确的.
基金supported by the National Natural Science Foundation of China (Grant No. 10872136,11072065 and 10932006)
文摘In this paper,we propose a novel nonlinear oscillator with strong irrational nonlinearities having smooth and discontinuous characteristics depending on the values of a smoothness parameter.The oscillator is similar to the SD oscillator,originally introduced in Phys Rev E 69(2006).The equilibrium stability and the complex bifurcations of the unperturbed system are investigated.The bifurcation sets of the equilibria in parameter space are constructed to demonstrate transitions in the multiple well dynamics for both smooth and discontinuous regimes.The Melnikov method is employed to obtain the analytical criteria of chaotic thresholds for the singular closed orbits of homoclinic,homo-heteroclinic,cuspidal heteroclinic and tangent homoclinic orbits of the perturbed system.