In this paper, direct sequence spread spectrum multiple access (DS/SSMA) communication system employing serially concatenated trellis coded modulation (TCM) and continuous phase modulation (CPM) over flat Rayleigh fa...In this paper, direct sequence spread spectrum multiple access (DS/SSMA) communication system employing serially concatenated trellis coded modulation (TCM) and continuous phase modulation (CPM) over flat Rayleigh fading channel are presented. The performance of this concatenated TCM/CPM DS/SSMA system is exploited by the theoretical analysis and numerical simulations. The results demonstrate that significant improvements in error probability of this DS/SSMA system over the system with single TCM or CPM of different modulation indices can be achieved under the same conditions.展开更多
An adaptive joint source channel bit allocation method for video communications over error-prone channel is proposed.To protect the bit-streams from the channel bit errors,the rate compatible punctured convolution(RCP...An adaptive joint source channel bit allocation method for video communications over error-prone channel is proposed.To protect the bit-streams from the channel bit errors,the rate compatible punctured convolution(RCPC)code is used to produce coding rates varying from 4/5 to 1/2 using the same encoder and the Viterbi decoder.An expected end-to-end distortion model was presented to estimate the distortion introduced in compressed source coding due to quantization and channel bit errors jointly.Based on the proposed end-to-end distortion model,an adaptive joint source-channel bit allocation method was proposed under time-varying error-prone channel conditions.Simulated results show that the proposed methods could utilize the available channel capacity more efficiently and achieve better video quality than the other fixed coding-based bit allocation methods when transmitting over error-prone channels.展开更多
Recent studies have identified mutations in PHF8, an X-linked gene encoding a JmjC domain-containing protein, as a causal factor for X-linked mental retardation (XLMR) and cleft lip/cleft palate. However, the underl...Recent studies have identified mutations in PHF8, an X-linked gene encoding a JmjC domain-containing protein, as a causal factor for X-linked mental retardation (XLMR) and cleft lip/cleft palate. However, the underlying mechanism is unknown. Here we show that PHF8 is a histone demethylase and coactivator for retinoic acid receptor (RAR). Although activities for both H3K4me3/2/1 and H3K9me2/1 demethylation were detected in cellularbased assays, reeombinant PHF8 exhibited only H3K9me2/1 demethylase activity in vitro, suggesting that PHF8 is an H3K9me2/1 demethylase whose specificity may be modulated in vivo. Importantly, a mutant PHF8 (phenylalanine at position 279 to serine) identified in the XLMR patients is defective in enzymatie activity, indicating that the loss of histone demethylase activity is causally linked with the onset of disease. In addition, we show that PHF8 binds specifically to H3K4me3/2 peptides via an N-terminal PHD finger domain. Consistent with a role for PHF8 in neuronal differentiation, knockdown of PHF8 in mouse embryonic carcinoma P19 cells impairs RA-induced neuronal differentiation, whereas overexpression of the wild-type but not the F279S mutant PHF8 drives PI9 cells toward neuronal differentiation. Furthermore, we show that PHF8 interacts with RAR~ and functions as a coactivator for RARa. Taken together, our results suggest that histone methylation modulated by PHF8 plays a critical role in neuronal differentiation.展开更多
We study entanglement swapping in continuous variable systems by using braiding transformations.It isfound that entanglement swapping in two-mode squeezed vacuum states and squeezed coherent states can be realizedbase...We study entanglement swapping in continuous variable systems by using braiding transformations.It isfound that entanglement swapping in two-mode squeezed vacuum states and squeezed coherent states can be realizedbased on the braiding operators.展开更多
The paper explores applications of genetic programming to co-evolution of morphology and low-level control. In most reasonably difficult tasks, facilitation provided by modularity has proved to be vital for successful...The paper explores applications of genetic programming to co-evolution of morphology and low-level control. In most reasonably difficult tasks, facilitation provided by modularity has proved to be vital for successful application of genetic programming. However, the need for sharing data among nodes in the syntactic tree becomes especially acute when evolving modular programs. It has been shown before that it may be beneficial that modules themselves be node-attached. The paper presents extensions to standard genetic programming (the so-called contexts and context blocks) that allow for straight-forward storage, retrieval, transfer, and modification of data stored in the context of a syntactic tree, and shared by multiple nodes. Framework is thus provided for both: data sharing and node-attached modules. Finally, using context blocks, a genetic algorithm has been embedded within genetic programming to evolve values of constants. In genetic programming evolution of constants has been a long-standing problem. The paper shows how context blocks can be utilized to provide a more granular and flexible approach to their evolution. As shown in previous works, node-attached modules perform favorably when compared with existing approaches. Concerning evolution of context block constants, it is shown here that they too perform favorably when compared with ephemeral constants.展开更多
Animal intestine is a favorable habitat to microbes. It facilitates the evolution of dense and diversified microbial communities that are highly active and persistent throughout life span. Here, we stimulate this uniq...Animal intestine is a favorable habitat to microbes. It facilitates the evolution of dense and diversified microbial communities that are highly active and persistent throughout life span. Here, we stimulate this unique biosystem to develop high-efficient continuous bio-manufacturing processes. The pig small intestine was explored as a novel bioreactor with industrial Saccharornyces cerevisiae for biofuel production. Results showed that the small intestine was a beneficial material for cell adherence. The cells on the intestine exhibited the abilities of self- immobilization, self-duplication and self-repairing. Therefore the intestine-based S. cerevisiae could be continu- ously used for a long time at high metabolic activities. Both the fermentation speed and ethanol yield were im- proved. This study provides valuable insights into the functions of intestine-based biosystem and should inspire the development of bionic industrial processes. Future dissection of the interface mechanism and design of more bionic materials will make bioprocesses more economically favorable and environmentally sustainable.展开更多
Lateral inhibitory effect is a well-known feature of information processing in neural systems.This paper presents a neural array model with simple lateral inhibitory connections.After detailed examining into the dynam...Lateral inhibitory effect is a well-known feature of information processing in neural systems.This paper presents a neural array model with simple lateral inhibitory connections.After detailed examining into the dynamics of this kind of neural array,the author gives the sufficient conditions under which the outputs of the network will tend to a special stable pattern called spatial sparse pattern in which if the output of a neuron is 1,then the outputs of the neurons in its neighborhood are 0.This ability called spatial sparse coding plays an important role in self-coding,self-organization and associative memory for patterns and pattern sequences.The main conclusions about the dynamics of this kind of neural array which is related to spatial sparse coding are introduced.展开更多
文摘In this paper, direct sequence spread spectrum multiple access (DS/SSMA) communication system employing serially concatenated trellis coded modulation (TCM) and continuous phase modulation (CPM) over flat Rayleigh fading channel are presented. The performance of this concatenated TCM/CPM DS/SSMA system is exploited by the theoretical analysis and numerical simulations. The results demonstrate that significant improvements in error probability of this DS/SSMA system over the system with single TCM or CPM of different modulation indices can be achieved under the same conditions.
基金National High-Tech Research and Development Plan of China(No.2003AA1Z2130)Science and Technology Project of Zhejiang Province,China(No.2006C11200)
文摘An adaptive joint source channel bit allocation method for video communications over error-prone channel is proposed.To protect the bit-streams from the channel bit errors,the rate compatible punctured convolution(RCPC)code is used to produce coding rates varying from 4/5 to 1/2 using the same encoder and the Viterbi decoder.An expected end-to-end distortion model was presented to estimate the distortion introduced in compressed source coding due to quantization and channel bit errors jointly.Based on the proposed end-to-end distortion model,an adaptive joint source-channel bit allocation method was proposed under time-varying error-prone channel conditions.Simulated results show that the proposed methods could utilize the available channel capacity more efficiently and achieve better video quality than the other fixed coding-based bit allocation methods when transmitting over error-prone channels.
文摘Recent studies have identified mutations in PHF8, an X-linked gene encoding a JmjC domain-containing protein, as a causal factor for X-linked mental retardation (XLMR) and cleft lip/cleft palate. However, the underlying mechanism is unknown. Here we show that PHF8 is a histone demethylase and coactivator for retinoic acid receptor (RAR). Although activities for both H3K4me3/2/1 and H3K9me2/1 demethylation were detected in cellularbased assays, reeombinant PHF8 exhibited only H3K9me2/1 demethylase activity in vitro, suggesting that PHF8 is an H3K9me2/1 demethylase whose specificity may be modulated in vivo. Importantly, a mutant PHF8 (phenylalanine at position 279 to serine) identified in the XLMR patients is defective in enzymatie activity, indicating that the loss of histone demethylase activity is causally linked with the onset of disease. In addition, we show that PHF8 binds specifically to H3K4me3/2 peptides via an N-terminal PHD finger domain. Consistent with a role for PHF8 in neuronal differentiation, knockdown of PHF8 in mouse embryonic carcinoma P19 cells impairs RA-induced neuronal differentiation, whereas overexpression of the wild-type but not the F279S mutant PHF8 drives PI9 cells toward neuronal differentiation. Furthermore, we show that PHF8 interacts with RAR~ and functions as a coactivator for RARa. Taken together, our results suggest that histone methylation modulated by PHF8 plays a critical role in neuronal differentiation.
基金Supported by National Research Foundation and Ministry of Education,Singapore under Research under Grant No.WBS:R-710-000-008-271the Natural Science Foundation of China under Grant No.10975075the Fundamental Research Funds for the Central Universities
文摘We study entanglement swapping in continuous variable systems by using braiding transformations.It isfound that entanglement swapping in two-mode squeezed vacuum states and squeezed coherent states can be realizedbased on the braiding operators.
文摘The paper explores applications of genetic programming to co-evolution of morphology and low-level control. In most reasonably difficult tasks, facilitation provided by modularity has proved to be vital for successful application of genetic programming. However, the need for sharing data among nodes in the syntactic tree becomes especially acute when evolving modular programs. It has been shown before that it may be beneficial that modules themselves be node-attached. The paper presents extensions to standard genetic programming (the so-called contexts and context blocks) that allow for straight-forward storage, retrieval, transfer, and modification of data stored in the context of a syntactic tree, and shared by multiple nodes. Framework is thus provided for both: data sharing and node-attached modules. Finally, using context blocks, a genetic algorithm has been embedded within genetic programming to evolve values of constants. In genetic programming evolution of constants has been a long-standing problem. The paper shows how context blocks can be utilized to provide a more granular and flexible approach to their evolution. As shown in previous works, node-attached modules perform favorably when compared with existing approaches. Concerning evolution of context block constants, it is shown here that they too perform favorably when compared with ephemeral constants.
文摘Animal intestine is a favorable habitat to microbes. It facilitates the evolution of dense and diversified microbial communities that are highly active and persistent throughout life span. Here, we stimulate this unique biosystem to develop high-efficient continuous bio-manufacturing processes. The pig small intestine was explored as a novel bioreactor with industrial Saccharornyces cerevisiae for biofuel production. Results showed that the small intestine was a beneficial material for cell adherence. The cells on the intestine exhibited the abilities of self- immobilization, self-duplication and self-repairing. Therefore the intestine-based S. cerevisiae could be continu- ously used for a long time at high metabolic activities. Both the fermentation speed and ethanol yield were im- proved. This study provides valuable insights into the functions of intestine-based biosystem and should inspire the development of bionic industrial processes. Future dissection of the interface mechanism and design of more bionic materials will make bioprocesses more economically favorable and environmentally sustainable.
文摘Lateral inhibitory effect is a well-known feature of information processing in neural systems.This paper presents a neural array model with simple lateral inhibitory connections.After detailed examining into the dynamics of this kind of neural array,the author gives the sufficient conditions under which the outputs of the network will tend to a special stable pattern called spatial sparse pattern in which if the output of a neuron is 1,then the outputs of the neurons in its neighborhood are 0.This ability called spatial sparse coding plays an important role in self-coding,self-organization and associative memory for patterns and pattern sequences.The main conclusions about the dynamics of this kind of neural array which is related to spatial sparse coding are introduced.