Based on the research on the solidification of twin-roll continuous casting aluminum thin strip, the analytical model of heterogeneous nucleation, the growth kinetics of tip (KGT) and columnar dendrite transformatio...Based on the research on the solidification of twin-roll continuous casting aluminum thin strip, the analytical model of heterogeneous nucleation, the growth kinetics of tip (KGT) and columnar dendrite transformation to equiaxed dendrite (CET) of twin-roll continuous casting aluminum thin strip solidification was established by means of the principle of metal solidification and modem computer emulational technology. Meantime, based on the cellular automaton, the emulational model of twin-roll continuous casting aluminum thin strip, solidification was established. The foundation for the emulational simulation of twin-roll casting thin strip solidification structure was laid. Meanwhile, the mathematical simulation feasibility was confirmed by using the solidification process of twin-roll continuous casting aluminum thin strip.展开更多
A modified horizontal continuous casting process under the electromagnetic field was proposed for preparing AA3003/ AA4045 clad composite hollow billets. To investigate the effect of electromagnetic field on this proc...A modified horizontal continuous casting process under the electromagnetic field was proposed for preparing AA3003/ AA4045 clad composite hollow billets. To investigate the effect of electromagnetic field on this process, a comprehensive three-dimensional model was developed. Two cases with and without electromagnetic field were compared using the simulations. When rotating electromagnetic stirring is applied, the flow pattern of fluid melt is greatly modified; the mushy zone becomes much wider, the temperature profile becomes more uniform, and the solid fraction decreases for both the external and internal alloy melt layers. These modifications are beneficial for the formation of a bimetal interface and fine and uniform grain structure of the clad composite hollow billet. Experiments conducted using the same electrical and casting parameters as the simulations verify that under the electromagnetic field the microstructure of the clad composite hollow billet becomes fine and the diffusion of the elements at the interface is promoted.展开更多
An extended continuum mixture model for macrosegregation is applied to predicting Cu and Mg segregation in large-size ingot of 2024 aluminum alloy during direct chill casting(DC). A microsegregation model using the ...An extended continuum mixture model for macrosegregation is applied to predicting Cu and Mg segregation in large-size ingot of 2024 aluminum alloy during direct chill casting(DC). A microsegregation model using the approximate phase diagram data was coupled with macroscopic transport equations for macrosegregation profiles. Then, the impacts of transport mechanisms on the formation of macrosegregation were discussed. It is found that copper and magnesium have a similar segregation configuration from the billet center to surface. Negative segregation is observed in the centerline and subsurface, whereas positive segregation is obtained in the surface and somewhat underestimated positive segregation in the middle radius. Further, the discrepancy between the predicted and experimental results was discussed in detail. The results show that the magnesium to some extent alleviates the copper segregation in ternary alloy, compared with that in binary alloy. The predicted results show good agreement with measured experimental data obtained from literatures.展开更多
The horizontal single belt casting(HSBC)incorporating a single-impingement feeding system was simulated with an improved numerical model.Physical experiments were carried out on the pilot-scale caster for validation.T...The horizontal single belt casting(HSBC)incorporating a single-impingement feeding system was simulated with an improved numerical model.Physical experiments were carried out on the pilot-scale caster for validation.The results show that the meniscus turbulence neither comes from the tundish region,nor from the impingement between the melt and the moving belt.It is the moving belt that gives rise to this high turbulence region,and this region can stir the melt near the meniscus.The feeding system studied and the moving belt give rise to a buffer region,which can optimize casting parameter variations,especially melt depth changes in the tundish.The temperature change rate of the bottom surface of the strip is around 4 times faster than that of the upper surface.展开更多
A new method called mixed Lagrangian and Eulerian method (MILE method) was used to simulate the thermomechanical behavior during continuous casting process of steel YF45MnV. The simulation results are basically in a...A new method called mixed Lagrangian and Eulerian method (MILE method) was used to simulate the thermomechanical behavior during continuous casting process of steel YF45MnV. The simulation results are basically in agreement with the measured data. The delaying period at the beginning of solidification is about 0.1. in square root of solidification time which is agreement with the data in literatures, and shell thickness increases in linear relation to square root of solidification time. The bloom surface temperature decreases gradually as the casting proceeds. The effective stress in the comer is much larger than that in the mid-face. The comer area is the dangerous zone of cracking. The effects of mold flux break temperature on the air gap and hot tearing indicator were also modeled. The model predicts that the bloom surface temperature increases with the increase of the mold flux break temperature, but the heat flux decreases with the increase of the mold flux break temperature. ,The hot tearing indicator is much smaller when the mold flux break temperature is higher.展开更多
The rheological behavior of aluminum alloy and its influencing factors in physical simulation of continuous roll casting process were studied by using a Gleeble-1500 thermal-mechanical simulation tester with a set of ...The rheological behavior of aluminum alloy and its influencing factors in physical simulation of continuous roll casting process were studied by using a Gleeble-1500 thermal-mechanical simulation tester with a set of special clamp system. The relationships between the flow stress and the strain rate in the deformation process of simulating roll casting experiment were obtained. The results show that four different characteristic stages exist in the temperature range of the whole rheological process. The first occurs when the temperature is higher than 600 ℃, which belongs to the creep deformation stage; the second occurs when the temperature lies in the range of 500600 ℃, and it can be regarded as the high temperature and low stress level deformation stage; the third occurs when the temperature decreases to the range of 300500 ℃, it is considered to be the middle stress level deformation stage; the last occurs when the temperature is less than 300 ℃ and the strain rate is less than 1.00 s -1, it belongs to middle stress level deformation stage. But when the strain rate is larger than 1.00 s -1,it belongs to the high stress level deformation stage. And the relative constitutive models suitable for the four different stages of continuous roll casting process were established through multivariate linear regression analysis of the experimental data.展开更多
A theoretical investigation of fluid flow,heat transfer and solidification(solidification transfer phenomena,STP)was presented which coupled with direct-current(DC)magnetic fields in a high-speed strip-casting metal d...A theoretical investigation of fluid flow,heat transfer and solidification(solidification transfer phenomena,STP)was presented which coupled with direct-current(DC)magnetic fields in a high-speed strip-casting metal delivery system.The bidirectional interaction between the STP and DC magnetic fields was simplified as a unilateral one,and the fully coupled solidification transport equations were numerically solved by the finite volume method(FVM).While the magnetic field contours for a localized DC magnetic field were calculated by software ANSYS and then incorporated into a three-dimensional(3-D)steady model of the liquid cavity in the mold by means of indirect coupling.A new FVM-based direct-SIMPLE algorithm was adopted to solve the iterations of pressure-velocity(P-V).The braking effects of DC magnetic fields with various configurations were evaluated and compared with those without static magnetic field(SMF).The results show that 0.6 T magnetic field with combination configuration contributes to forming an isokinetic feeding of melt,the re-circulation zone is shifted towards the back wall of reservoir,and the velocity difference on the direction of height decreases from 0.1 m/s to 0.Furthermore,the thickness of solidified skull increases uniformly from 0.45 mm to 1.36 mm on the chilled substrate(belt)near the exit.展开更多
The mechanism of broadening of slab in continuous casting was studied by numerical simulations and experimental measurements in factories. The mechanism is derived by gradual exclusion of various factors related to th...The mechanism of broadening of slab in continuous casting was studied by numerical simulations and experimental measurements in factories. The mechanism is derived by gradual exclusion of various factors related to the broadening of slab. It is concluded that the slab exposes to no constraint at the direction of narrow face. Because of the static pressure of molten steel, the slab deforms creepily in the direction that consequently results in the broadening of slab. The broadening of slab increases with casting speed and static pressure of molten steel. The decrease of secondary cooling intensity and strength of steel at high temperature also contribute to the broadening of slab. The micro-alloying plays an important role in improving the strength of steel and in reducing the broadening of slab.展开更多
基金Project (u0837601) supported by the New Joint Fund of National Natural Science Foundation of ChinaProject (50874054) supported by the National Natural Science Foundation of China
文摘Based on the research on the solidification of twin-roll continuous casting aluminum thin strip, the analytical model of heterogeneous nucleation, the growth kinetics of tip (KGT) and columnar dendrite transformation to equiaxed dendrite (CET) of twin-roll continuous casting aluminum thin strip solidification was established by means of the principle of metal solidification and modem computer emulational technology. Meantime, based on the cellular automaton, the emulational model of twin-roll continuous casting aluminum thin strip, solidification was established. The foundation for the emulational simulation of twin-roll casting thin strip solidification structure was laid. Meanwhile, the mathematical simulation feasibility was confirmed by using the solidification process of twin-roll continuous casting aluminum thin strip.
基金Projects(51274054,U1332115,51271042,51375070,51401044)supported by the National Natural Science Foundation of ChinaProject(313011)supported by the Key Grant Project of Ministry of Education of China+4 种基金Project(2013A16GX110)supported by the Science and Technology Planning Project of Dalian,ChinaProject(2014M551075)supported by the China Postdoctoral Science FoundationProject supported by the Fundamental Research Funds for the Central Universities,China
文摘A modified horizontal continuous casting process under the electromagnetic field was proposed for preparing AA3003/ AA4045 clad composite hollow billets. To investigate the effect of electromagnetic field on this process, a comprehensive three-dimensional model was developed. Two cases with and without electromagnetic field were compared using the simulations. When rotating electromagnetic stirring is applied, the flow pattern of fluid melt is greatly modified; the mushy zone becomes much wider, the temperature profile becomes more uniform, and the solid fraction decreases for both the external and internal alloy melt layers. These modifications are beneficial for the formation of a bimetal interface and fine and uniform grain structure of the clad composite hollow billet. Experiments conducted using the same electrical and casting parameters as the simulations verify that under the electromagnetic field the microstructure of the clad composite hollow billet becomes fine and the diffusion of the elements at the interface is promoted.
基金Project(51420105005)supported by the Major International(Regional)Joint Research Program of National Natural Science Foundation of ChinaProject(2016YFF0101301)supported by the National Key Research and Development Program of China
文摘An extended continuum mixture model for macrosegregation is applied to predicting Cu and Mg segregation in large-size ingot of 2024 aluminum alloy during direct chill casting(DC). A microsegregation model using the approximate phase diagram data was coupled with macroscopic transport equations for macrosegregation profiles. Then, the impacts of transport mechanisms on the formation of macrosegregation were discussed. It is found that copper and magnesium have a similar segregation configuration from the billet center to surface. Negative segregation is observed in the centerline and subsurface, whereas positive segregation is obtained in the surface and somewhat underestimated positive segregation in the middle radius. Further, the discrepancy between the predicted and experimental results was discussed in detail. The results show that the magnesium to some extent alleviates the copper segregation in ternary alloy, compared with that in binary alloy. The predicted results show good agreement with measured experimental data obtained from literatures.
基金financial support received from the research grant of Shandong University of Technology (4041/419099)the Natural Sciences and Engineering Research Council of Canada (NSERC)the International Advisory Board of Supporting Companies of the McGill Metals Processing Centre (MMPC).
文摘The horizontal single belt casting(HSBC)incorporating a single-impingement feeding system was simulated with an improved numerical model.Physical experiments were carried out on the pilot-scale caster for validation.The results show that the meniscus turbulence neither comes from the tundish region,nor from the impingement between the melt and the moving belt.It is the moving belt that gives rise to this high turbulence region,and this region can stir the melt near the meniscus.The feeding system studied and the moving belt give rise to a buffer region,which can optimize casting parameter variations,especially melt depth changes in the tundish.The temperature change rate of the bottom surface of the strip is around 4 times faster than that of the upper surface.
基金Project(51174020) supported by the National Natural Science Foundation of China
文摘A new method called mixed Lagrangian and Eulerian method (MILE method) was used to simulate the thermomechanical behavior during continuous casting process of steel YF45MnV. The simulation results are basically in agreement with the measured data. The delaying period at the beginning of solidification is about 0.1. in square root of solidification time which is agreement with the data in literatures, and shell thickness increases in linear relation to square root of solidification time. The bloom surface temperature decreases gradually as the casting proceeds. The effective stress in the comer is much larger than that in the mid-face. The comer area is the dangerous zone of cracking. The effects of mold flux break temperature on the air gap and hot tearing indicator were also modeled. The model predicts that the bloom surface temperature increases with the increase of the mold flux break temperature, but the heat flux decreases with the increase of the mold flux break temperature. ,The hot tearing indicator is much smaller when the mold flux break temperature is higher.
文摘The rheological behavior of aluminum alloy and its influencing factors in physical simulation of continuous roll casting process were studied by using a Gleeble-1500 thermal-mechanical simulation tester with a set of special clamp system. The relationships between the flow stress and the strain rate in the deformation process of simulating roll casting experiment were obtained. The results show that four different characteristic stages exist in the temperature range of the whole rheological process. The first occurs when the temperature is higher than 600 ℃, which belongs to the creep deformation stage; the second occurs when the temperature lies in the range of 500600 ℃, and it can be regarded as the high temperature and low stress level deformation stage; the third occurs when the temperature decreases to the range of 300500 ℃, it is considered to be the middle stress level deformation stage; the last occurs when the temperature is less than 300 ℃ and the strain rate is less than 1.00 s -1, it belongs to middle stress level deformation stage. But when the strain rate is larger than 1.00 s -1,it belongs to the high stress level deformation stage. And the relative constitutive models suitable for the four different stages of continuous roll casting process were established through multivariate linear regression analysis of the experimental data.
基金Projects(51071062,51271068,51274077)supported by the National Natural Science Foundation of ChinaProject(2011CB605504)supported by the National Basic Research Program(973 Program)of China
文摘A theoretical investigation of fluid flow,heat transfer and solidification(solidification transfer phenomena,STP)was presented which coupled with direct-current(DC)magnetic fields in a high-speed strip-casting metal delivery system.The bidirectional interaction between the STP and DC magnetic fields was simplified as a unilateral one,and the fully coupled solidification transport equations were numerically solved by the finite volume method(FVM).While the magnetic field contours for a localized DC magnetic field were calculated by software ANSYS and then incorporated into a three-dimensional(3-D)steady model of the liquid cavity in the mold by means of indirect coupling.A new FVM-based direct-SIMPLE algorithm was adopted to solve the iterations of pressure-velocity(P-V).The braking effects of DC magnetic fields with various configurations were evaluated and compared with those without static magnetic field(SMF).The results show that 0.6 T magnetic field with combination configuration contributes to forming an isokinetic feeding of melt,the re-circulation zone is shifted towards the back wall of reservoir,and the velocity difference on the direction of height decreases from 0.1 m/s to 0.Furthermore,the thickness of solidified skull increases uniformly from 0.45 mm to 1.36 mm on the chilled substrate(belt)near the exit.
基金supported by the Key Projects in the National Science & Technology Pillar Program during the Eleventh Five-Year Plan of China(Grant No. 2006BAE03A04)
文摘The mechanism of broadening of slab in continuous casting was studied by numerical simulations and experimental measurements in factories. The mechanism is derived by gradual exclusion of various factors related to the broadening of slab. It is concluded that the slab exposes to no constraint at the direction of narrow face. Because of the static pressure of molten steel, the slab deforms creepily in the direction that consequently results in the broadening of slab. The broadening of slab increases with casting speed and static pressure of molten steel. The decrease of secondary cooling intensity and strength of steel at high temperature also contribute to the broadening of slab. The micro-alloying plays an important role in improving the strength of steel and in reducing the broadening of slab.