期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
网络参与者见面概率的迭代估计方法
1
作者 李永立 樊宁远 +1 位作者 林亿民 吴冲 《系统工程学报》 CSCD 北大核心 2018年第2期167-174,共8页
针对网络参与者见面概率的估计问题,引入效用分析的方法,并将效用函数的估计问题与logistic回归分析相联系.在深入分析网络参与者链接形成过程的基础上,提出了迭代估计算法.进一步给出了该方法的基本算例,并在合著者网络中进行了方法的... 针对网络参与者见面概率的估计问题,引入效用分析的方法,并将效用函数的估计问题与logistic回归分析相联系.在深入分析网络参与者链接形成过程的基础上,提出了迭代估计算法.进一步给出了该方法的基本算例,并在合著者网络中进行了方法的应用研究.结果表明该方法能够实现对网络参与者见面概率进行估算的研究目标,有助于优化网络的整体产出,可行并实用. 展开更多
关键词 见面概率 迭代估计方法 合著网络 社会网络分析
下载PDF
基于Shapley值抽样估计法的电力用户参与互动效益分摊方法研究
2
作者 郁清云 彭飞 +2 位作者 孟凡奇 戴小妹 束云豪 《电力需求侧管理》 2023年第6期15-20,共6页
为促进用户与电网实施友好互动,降低能源消费和用电负荷,应研究如何将电网公司的互动效益按一定补贴比例公平地分摊给各参与用户。为解决传统Shapley值法的组合爆炸问题,提出一种基于Shapley值抽样估计法分摊用户互动效益的补偿方法,该... 为促进用户与电网实施友好互动,降低能源消费和用电负荷,应研究如何将电网公司的互动效益按一定补贴比例公平地分摊给各参与用户。为解决传统Shapley值法的组合爆炸问题,提出一种基于Shapley值抽样估计法分摊用户互动效益的补偿方法,该方法在满足收支平衡的约束条件下,通过分层随机抽样方法减少样本量;为确定各层样本分配量,综合比较了随机分配法、平均分配法及Neyman最优分配法的优缺点;为解决Neyman最优分配法中参与者各层样本标准差未知的问题,提出一种基于强化学习算法的ε(t)迭代估计最优分配方法。算例表明所提出的方法具有Shapley值法的所有特性,能精确地估计Shapley值法的分摊结果,因而能实现公平合理的分配,同时能有效地减少计算时间。 展开更多
关键词 电力用户 互动效益 分层随机抽样 样本分配 SHAPLEY值 ε(t)估计最优分配方法
下载PDF
Non-iterative parameter estimation of the 2R-1C model suitable for low-cost embedded hardware
3
作者 Mitar SIMI? Zdenka BABI? +1 位作者 Vladimir RISOJEVI? Goran MSTOJANOVI? 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2020年第3期476-491,共16页
Parameter estimation of the 2 R-1 C model is usually performed using iterative methods that require high-performance processing units.Consequently,there is a strong motivation to develop less time-consuming and more p... Parameter estimation of the 2 R-1 C model is usually performed using iterative methods that require high-performance processing units.Consequently,there is a strong motivation to develop less time-consuming and more power-efficient parameter estimation methods.Such low-complexity algorithms would be suitable for implementation in portable microcontroller-based devices.In this study,we propose the quadratic interpolation non-iterative parameter estimation(QINIPE)method,based on quadratic interpolation of the imaginary part of the measured impedance,which enables more accurate estimation of the characteristic frequency.The 2 R-1 C model parameters are subsequently calculated from the real and imaginary parts of the measured impedance using a set of closed-form expressions.Comparative analysis conducted on the impedance data of the 2 R-1 C model obtained in both simulation and measurements shows that the proposed QINIPE method reduces the number of required measurement points by 80%in comparison with our previously reported non-iterative parameter estimation(NIPE)method,while keeping the relative estimation error to less than 1%for all estimated parameters.Both non-iterative methods are implemented on a microcontroller-based device;the estimation accuracy,RAM,flash memory usage,and execution time are monitored.Experiments show that the QINIPE method slightly increases the execution time by 0.576 ms(about 6.7%),and requires 24%(1.2 KB)more flash memory and just 2.4%(32 bytes)more RAM in comparison to the NIPE method.However,the impedance root mean square errors(RMSEs)of the QINIPE method are decreased to 42.8%(for the real part)and 64.5%(for the imaginary part)of the corresponding RMSEs obtained using the NIPE method.Moreover,we compared the QINIPE and the complex nonlinear least squares(CNLS)estimation of the 2 R-1 C model parameters.The results obtained show that although the estimation accuracy of the QINIPE is somewhat lower than the estimation accuracy of the CNLS,it is still satisfactory for many practical purposes and its execution time reduces to1/45–1/30. 展开更多
关键词 2R-1C model Embedded systems Parameter estimation Non-iterative methods Quadratic interpolation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部