研究了含静止无功补偿器(Static var compensator,SVC)的多机电力系统的暂态稳定性。首先建立了含SVC的多机电力系统模型,并基于等效负荷概念,构造出含SVC的电力系统的能量函数,验证了能量函数在故障后单调下降的特性。将SVC势能用并网...研究了含静止无功补偿器(Static var compensator,SVC)的多机电力系统的暂态稳定性。首先建立了含SVC的多机电力系统模型,并基于等效负荷概念,构造出含SVC的电力系统的能量函数,验证了能量函数在故障后单调下降的特性。将SVC势能用并网电压和功率表示,克服了SVC模型复杂给构建能量函数带来的困难。采用提出的能量函数,在修改的3机9节点系统和10机39节点系统中验证了迭代势能界面法(Iterative potential energy boundary surface,IPEBS)的有效性。计算结果表明,与时域仿真法相比较,所得故障临界清除时间(Critical clearing time,CCT)的误差较小。展开更多
文摘研究了含静止无功补偿器(Static var compensator,SVC)的多机电力系统的暂态稳定性。首先建立了含SVC的多机电力系统模型,并基于等效负荷概念,构造出含SVC的电力系统的能量函数,验证了能量函数在故障后单调下降的特性。将SVC势能用并网电压和功率表示,克服了SVC模型复杂给构建能量函数带来的困难。采用提出的能量函数,在修改的3机9节点系统和10机39节点系统中验证了迭代势能界面法(Iterative potential energy boundary surface,IPEBS)的有效性。计算结果表明,与时域仿真法相比较,所得故障临界清除时间(Critical clearing time,CCT)的误差较小。