期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于迭代卡尔曼粒子滤波器的锂电池SOC估算算法研究 被引量:3
1
作者 罗世昌 杨进 《工业控制计算机》 2019年第2期104-106,共3页
荷电状态(SOC)估算是电动汽车电池管理系统中最为核心的一个参数,对其精确估计能有效提高锂电池寿命及使用效率。考虑到基于扩展卡尔曼滤波(EKF)波算法存在的不足,应用粒子滤波算法对锂电池SOC进行在线估计,有效降低EKF过程中高阶损失... 荷电状态(SOC)估算是电动汽车电池管理系统中最为核心的一个参数,对其精确估计能有效提高锂电池寿命及使用效率。考虑到基于扩展卡尔曼滤波(EKF)波算法存在的不足,应用粒子滤波算法对锂电池SOC进行在线估计,有效降低EKF过程中高阶损失误差。针对粒子退化问题,提出基于IEKF算法在采样阶段对每个粒子计算其均值及协方差以优化建议密度函数,随后利用该均值及协方差指导粒子重采样。采用1C恒流工况及动态测试工况(DST)对实验结果进行分析验证,实验结果表明相比于粒子滤波(PF)及扩展卡尔曼滤波算法(EKF),改进的粒子滤波具备更好的估算精度。 展开更多
关键词 荷电状态(SOC) 锂电池 粒子滤波(PF) 迭代卡尔曼粒子滤波算法(IEKF-PF)
下载PDF
基于迭代卡尔曼粒子滤波的目标跟踪算法研究
2
作者 绳慧 《军械工程学院学报》 2013年第5期55-62,共8页
粒子滤波在基于图像序列的目标跟踪中获得了广泛应用.针对其计算量较大的问题,提出一种迭代卡尔曼粒子滤波算法,将非线性跟踪问题分解为线性子结构的全局状态空间模型和非线性子结构的局部状态空间模型,利用粒子滤波在卡尔曼滤波估计值... 粒子滤波在基于图像序列的目标跟踪中获得了广泛应用.针对其计算量较大的问题,提出一种迭代卡尔曼粒子滤波算法,将非线性跟踪问题分解为线性子结构的全局状态空间模型和非线性子结构的局部状态空间模型,利用粒子滤波在卡尔曼滤波估计值的局部范围内搜索目标,逼近真实目标状态.将实验结果与粒子滤波进行比较,结果表明,迭代卡尔曼粒子滤波减少了粒子数,降低了计算量,能够对高机动目标进行实时稳定的跟踪. 展开更多
关键词 卡尔曼滤波 粒子滤波 迭代卡尔曼粒子滤波 目标跟踪
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部