期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
曲面雕刻机器人的自适应迭代学习控制研究
1
作者 李祖明 《中国工程机械学报》 北大核心 2024年第5期626-630,共5页
为解决现有曲面雕刻平台存在运动误差较大且运动控制精度低的问题,本文以3-PRR并联曲面雕刻机器人为研究对象,对机器人的输出轨迹跟踪控制精度展开研究。采用闭环矢量法求解机器人反解运动学方程和雅可比矩阵。应用拉格朗日法建立并联... 为解决现有曲面雕刻平台存在运动误差较大且运动控制精度低的问题,本文以3-PRR并联曲面雕刻机器人为研究对象,对机器人的输出轨迹跟踪控制精度展开研究。采用闭环矢量法求解机器人反解运动学方程和雅可比矩阵。应用拉格朗日法建立并联机器人动力学方程,针对并联机器人在考虑干扰的情况下,建立了一种基于PD反馈结构的控制增益随迭代次数变化的自适应迭代学习控制策略,并采用联合数值仿真方法对机器人的稳定性及轨迹控制跟踪精度进行了验证。结果表明:当跟踪轨迹的最大误差降低为0.000115 mm时,可以实现3-PRR并联曲面雕刻机器人的高精度跟踪期望轨迹。验证了该控制策略的有效性,为实现曲面雕刻平台的高精度运动控制定位奠定了理论基础和应用前景。 展开更多
关键词 3-PRR并联机器人 动力学 自适应迭代学习法 轨迹跟踪
下载PDF
P型迭代学习控制法在上肢FNS反馈控制中的应用 被引量:4
2
作者 毕胜 嫣达来 +2 位作者 王福根 窦惠芳 周兆英 《中国康复医学杂志》 CAS CSCD 2000年第1期37-39,共3页
目的:探讨闭环控制在功能性电刺激中的应用,根据反馈信号来实时调节控制刺激的输出强度。方法:利用P型迭代学习控制方法,对正常人和偏瘫患者上肢肘关节运动角度分别进行了运动反馈控制研究。结果及结论:迭代学习控制,算法简单,... 目的:探讨闭环控制在功能性电刺激中的应用,根据反馈信号来实时调节控制刺激的输出强度。方法:利用P型迭代学习控制方法,对正常人和偏瘫患者上肢肘关节运动角度分别进行了运动反馈控制研究。结果及结论:迭代学习控制,算法简单,参数易调整,控制量变化平缓,轨迹跟踪精度高。在对正常人和瘫痪患者上肢肘关节的运动控制中,基本能达到预期效果。 展开更多
关键词 功能性电刺激 P型 学习控制 FNS 偏瘫
下载PDF
变频调速系统离散化迭代学习控制法及应用技术
3
作者 王东兴 《电工技术》 2003年第3期34-36,共3页
针对变频调速系统抗负载扰动性能差,在宽范围内调速时,非线性数学模型变化,控制效果变坏。提出用 PLC 做调节器,采用迭代自学习控制方法的转速负反馈闭环系统,逼近期望的轨迹线。给出了具体的软件实现流程框图及程序。
关键词 变频调速系统 离散化 学习控制 异步电机 变频器
下载PDF
迭代学习控制算法在称重配料系统的应用 被引量:3
4
作者 石斐 张民 宋晓峰 《机电技术》 2014年第6期47-50,共4页
在称重配料过程中,工程现场对设备的精度要求通常是非常苛刻的,而在实际操作时,误差来源多种多样,针对这种情况,文章采用迭代学习控制算法来完成对整个称重配料系统的精度控制。首先提出一个提前量,在控制对象的重复运动中,通过学习和... 在称重配料过程中,工程现场对设备的精度要求通常是非常苛刻的,而在实际操作时,误差来源多种多样,针对这种情况,文章采用迭代学习控制算法来完成对整个称重配料系统的精度控制。首先提出一个提前量,在控制对象的重复运动中,通过学习和记忆机制不断优化控制量,最后达到系统输出逐渐逼近期望输出的目的。 展开更多
关键词 称重配料系统 配料精度 提前量 学习控制
下载PDF
基于VxWorks的嵌入式气门电镦机控制系统研制 被引量:4
5
作者 吴黎明 李政广 +3 位作者 何仲凯 王桂棠 刘文豪 孙友松 《锻压技术》 CAS CSCD 北大核心 2007年第4期69-72,共4页
以气门镦粗加工工艺为研究对象,分析了加工过程中的加热电流、镦粗压力、镦粗缸和砧子缸运动速度、加工材料这几个重要参数的过程控制对气门成形的具体影响,提出了每个参数的控制环的设计,以消除折叠、过热、过烧和"失肉"等... 以气门镦粗加工工艺为研究对象,分析了加工过程中的加热电流、镦粗压力、镦粗缸和砧子缸运动速度、加工材料这几个重要参数的过程控制对气门成形的具体影响,提出了每个参数的控制环的设计,以消除折叠、过热、过烧和"失肉"等缺陷。针对传统加工工艺重要参数过程不可调节,参数值不能保存等缺陷和不足,以及工艺参数较多,部分参数之间相关性强,调整一个参数,另外的参数也须改变的难以匹配问题,采用了迭代学习的算法实现控制模块。开发了基于VxWorks嵌入式的控制系统硬件和软件。改变了传统的依靠现场工人操作水平和经验的控制模式,提高了气门镦件的质量和生产效率。系统具有较强鲁棒性,符合工业综合控制向智能化发展的方向。 展开更多
关键词 电镦机 控制系统 迭代学习法 嵌入式 VXWORKS
下载PDF
Iterative Learning Model Predictive Control for a Class of Continuous/Batch Processes 被引量:9
6
作者 周猛飞 王树青 +1 位作者 金晓明 张泉灵 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2009年第6期976-982,共7页
An iterative learning model predictive control (ILMPC) technique is applied to a class of continuous/batch processes. Such processes are characterized by the operations of batch processes generating periodic strong ... An iterative learning model predictive control (ILMPC) technique is applied to a class of continuous/batch processes. Such processes are characterized by the operations of batch processes generating periodic strong disturbances to the continuous processes and traditional regulatory controllers are unable to eliminate these periodic disturbances. ILMPC integrates the feature of iterative learning control (ILC) handling repetitive signal and the flexibility of model predictive control (MPC). By on-line monitoring the operation status of batch processes, an event-driven iterative learning algorithm for batch repetitive disturbances is initiated and the soft constraints are adjusted timely as the feasible region is away from the desired operating zone. The results of an industrial application show that the proposed ILMPC method is effective for a class of continuous/batch processes. 展开更多
关键词 continuous/batch process model predictive control event monitoring iterative learning soft constraint
下载PDF
An LMI Method to Robust Iterative Learning Fault-tolerant Guaranteed Cost Control for Batch Processes 被引量:11
7
作者 王立敏 陈曦 高福荣 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2013年第4期401-411,共11页
Based on an equivalent two-dimensional Fornasini-Marchsini model for a batch process in industry, a closed-loop robust iterative learning fault-tolerant guaranteed cost control scheme is proposed for batch processes w... Based on an equivalent two-dimensional Fornasini-Marchsini model for a batch process in industry, a closed-loop robust iterative learning fault-tolerant guaranteed cost control scheme is proposed for batch processes with actuator failures. This paper introduces relevant concepts of the fault-tolerant guaranteed cost control and formulates the robust iterative learning reliable guaranteed cost controller (ILRGCC). A significant advantage is that the proposed ILRGCC design method can be used for on-line optimization against batch-to-batch process uncertainties to realize robust tracking of set-point trajectory in time and batch-to-batch sequences. For the convenience of implementation, only measured output errors of current and previous cycles are used to design a synthetic controller for iterative learning control, consisting of dynamic output feedback plus feed-forward control. The proposed controller can not only guarantee the closed-loop convergency along time and cycle sequences but also satisfy the H∞performance level and a cost function with upper bounds for all admissible uncertainties and any actuator failures. Sufficient conditions for the controller solution are derived in terms of linear matrix inequalities (LMIs), and design procedures, which formulate a convex optimization problem with LMI constraints, are presented. An example of injection molding is given to illustrate the effectiveness and advantages of the ILRGCC design approach. 展开更多
关键词 two-dimensional Fornasini-Marchsini model batch process iterative learning control linear matrix inequality fault-tolerant guaranteed cost control
下载PDF
A novel policy iteration based deterministic Q-learning for discrete-time nonlinear systems 被引量:8
8
作者 WEI QingLai LIU DeRong 《Science China Chemistry》 SCIE EI CAS CSCD 2015年第12期143-157,共15页
In this paper, a novel iterative Q-learning algorithm, called "policy iteration based deterministic Qlearning algorithm", is developed to solve the optimal control problems for discrete-time deterministic no... In this paper, a novel iterative Q-learning algorithm, called "policy iteration based deterministic Qlearning algorithm", is developed to solve the optimal control problems for discrete-time deterministic nonlinear systems. The idea is to use an iterative adaptive dynamic programming(ADP) technique to construct the iterative control law which optimizes the iterative Q function. When the optimal Q function is obtained, the optimal control law can be achieved by directly minimizing the optimal Q function, where the mathematical model of the system is not necessary. Convergence property is analyzed to show that the iterative Q function is monotonically non-increasing and converges to the solution of the optimality equation. It is also proven that any of the iterative control laws is a stable control law. Neural networks are employed to implement the policy iteration based deterministic Q-learning algorithm, by approximating the iterative Q function and the iterative control law, respectively. Finally, two simulation examples are presented to illustrate the performance of the developed algorithm. 展开更多
关键词 adaptive critic designs adaptive dynamic programming approximate dynamic programming Q-LEARNING policy iteration neural networks nonlinear systems optimal control
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部