期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
矿产预测中的成矿因子选择方法:以滇东南金矿预测为例 被引量:1
1
作者 俞乐 柏坚 张汉奎 《浙江大学学报(理学版)》 CAS CSCD 北大核心 2011年第3期348-353,共6页
由于矿产地质信息的复杂性和不确定性,难以建立精确的数学模型来确定矿产资源的分布状况.非线性分析建模技术,如人工神经网络(Artificial Neural Network,ANN)、支持向量机(Support Vector Machine,SVM)等,给矿产预测工作提供了新的途径... 由于矿产地质信息的复杂性和不确定性,难以建立精确的数学模型来确定矿产资源的分布状况.非线性分析建模技术,如人工神经网络(Artificial Neural Network,ANN)、支持向量机(Support Vector Machine,SVM)等,给矿产预测工作提供了新的途径.这类方法在处理数据时可以避免数据分析和建模的困难,即不须理解各种成矿因子与矿床(点)之间的相互关系,只须选择已知的矿床(点)和非矿产(点),进行"黑箱"学习.虽然经过合理的训练,这类方法能够得到较高的预测精度,但由于其分类过程的非线性特性,难以获得容易理解的分类规则,提供成矿因子的知识.本文采用基于SVM的迭代特征消去(Recursive Feature Elimination,RFE)技术(SVM-RFE),即在SVM模型的训练过程中,采用RFE特征选择方法,从所有输入的成矿因子中选择出对矿床(点)能正确预测的重要因子,以提供对输入模型的成矿因子的客观评价.通过对滇东南地区金矿预测的实践表明,采用SVM-RFE技术从原始10类成矿因子中自动选择6类进行预测的精度从68.42%提高到94.74%,并且得到该区域进行矿产预测的成矿因子重要性依次是:Au异常、As异常、侵入岩、下三叠统与中三叠统之间的平行不整合面、上二叠统与三叠系的平行不整合面、断裂交汇点密度、石炭系和下二叠统间的平行不整合面、中上泥盆统和石炭系间的平行不整合面、Sb异常和Hg异常,从中选取前6类成矿因子进行SVM训练得到的预测精度最高.这一结论可为在该区域进行矿产预测的资料选取,以及对成矿因子的理解提供支持. 展开更多
关键词 特征选择 支持向量机 迭代特征消去 金矿 滇东南
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部